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1    Introduction 

In our just completed AFOSR contract, we have carried out an extensive research program 
for the study of robust system control using methodologies from interpolation theory, dilation 
theory, and functional analysis. We have also become interested in image processing and 
computer vision, and their application to visual tracking problems. 

In this Final Report, we will summarize some of our key results. A number of the research 
directions described here are being continued in our new three year AFOSR contract as well. 
In particular, we will discuss our work in nonlinear H°° theory, distributed parameter control, 
robust stability under various classes of perturbations, and visual tracking. 

Under the support of AFOSR-AF/F49620-94-1-00S8DEF, we have continued to develop 
our operator-theoretic methods for nonlinear robust control which we had already successfully 
applied to the linear case. One of the pillars of our theory is a novel causal dilation result 
which combines the classical dilation theory of Sarason-Sz.Nagy-Foias, and the nested algebra 
setting of Arveson. This we believe also has important implications to time-varying systems 
which is an ongoing topic of research for us. In this Final Report, we will sketch a solution 
for the full standard nonlinear H°° control problem in this framework as well. 

As part of our AFOSR sponsored research, we have been investigating various issues in 
distributed parameter control. Recently a monograph [71] which extensively describes our 
skew Toeplitz approach to distributed H°° design and analysis has been published. This is 
based primarily on frequency domain ideas. We have been more recently trying to meld time- 
domain and frequency-domain methods for robust distributed parameter control into a new 
synthesis to get the advantages of both points of view. 

We have also done extensive work on problems in //-synthesis and analysis. We have 
developed a general lifting procedure, by which we can interpret the D-scaled upper bound 
for the structured singular value as a singular value on a certain extended space. We have 
shown in which cases lifting is unnecessary, i.e., the upper bound gives a non-conservative 
measure of robustness. This is very important since the upper bound for fi is log-convex in the 
scalings and so can be computed, while // cannot. Our results work directly for systems, not 
just finite matrices. This allows us to study broad classes of structured perturbations using 
this tool. We have also been continuing our work to build a rigorous //-synthesis procedure 
based on structured interpolation. 

A major direction in our research is the design of novel techniques for using visual in- 
formation in control systems, and in particular the problem of visual tracking. Even though 
tracking in the presence of a disturbance is a classical control issue, because of the highly 
uncertain nature of the disturbance, this type of control/vision problem is very difficult and 
challenging. We believe that this effort will lead to enhanced man-machine interfaces for in- 
teractions with computers and more complicated systems such as remote controlled weapons 
and vehicles. In particular, we have been employing our control/vision methodology for the 
airborne laser (ABL) program at Phillips Laboratory in our continuing collaboration with 
Don Washburn and Sal Cusumano. Versions of some of our software are already running 
there for use in the project. 

Our interest in visual tracking has naturally led us to consider certain problems in com- 
puter vision and image processing. Thus, we have been conducting research into advanced 
algorithms in image processing and computer vision for a variety of uses: image smoothing 
and enhancement, image segmentation, morphology, denoising algorithms, edge detection, 
shape recognition, stereo disparity, optical flow, deformable contours ("snakes") for tracking. 



Our techniques have already been applied to a variety of imagery (military and medical), and 
have been used to define a novel affine invariant scale-space. Our ideas are based on certain 
types of geometric invariant flows rooted in the mathematical theory of curve and surface evo- 
lution. There are now available powerful numerical algorithms based on Hamilton-Jacobi type 
equations and the associated theory of viscosity solutions for the computer implementation 
of this methodology. 

It is important to note that visual tracking differs from standard tracking problems in that 
the feedback signal is measured using imaging sensors. In particular, it has to be extracted via 
computer vision and image processing algorithms and interpreted by a reasoning algorithm 
before being used in the control loop. Furthermore, the response speed is a critical aspect. 
As we have indicated above, we have been developing robust control algorithms for some 
years now, valid for general classes of distributed parameter and nonlinear systems based on 
interpolation and operator theoretic methods. In our continuing research program in this 
area, we have been explicitly combining our robust control techniques and the new approach 
to image processing which we have just sketched, in order to develop "state of the art" visual 
tracking algorithms. 

In summary, in this Final Report, we will describe a variety of problems concerning the 
control of systems in the presence of uncertainty which relate to a number of practical and 
theoretical issues which we have investigated and which will provide the impetus for our 
AFOSR sponsored research for the next several years. 

2    Nonlinear Robust Control 

We have been pursuing for some time now the problem of finding suitable extensions of H°° 
to the nonlinear framework. Indeed, some of the first papers in this connection are [10, 11]. 
This research has been continued in AFOSR-AF/F49620-94-1-00S8DEF. 

It turns out that this research direction has brought out a number of intriguing questions 
regarding the causality of input/output operators. This has led us to some new results in 
which we have been able to place an explicit causality constraint in the commutant lifting 
framework for the first time [66, 68, 81]. 

More precisely, in one key approach that we have been considering for the extension of 
generalized interpolation theory (the mathematical basis of H°°) to nonlinear input/output 
operators [67], we find that we must apply the linear commutant lifting theorem to an H2- 
space defined on the n-disc Dn. The difficulty is that when one applies the standard theory to 
Dn (n > 2), even though time-invariance is preserved (that is, commutation with the appro- 
priate shift), causality is generally lost. Thus to successfully find a nonlinear generalization 
of linear H°° suitable for control applications, we need to include the causality constraint 
explicitly in the formulation of the interpolation problem. We will now sketch some of the 
relevant results from [81, 67, 68] which allows us to accomplish this. 

2.1    Causal Operators 

A heuristic definition of "causality" for a given input/output operator is that the past output 
is independent of the future inputs. Formally, let S denote an isometry on a Hubert space 
Q, and let T denote a contraction on a Hubert space "H. Let Pj0, j > 1 denote a sequence of 
orthogonal projections in Q satisfying the following conditions: 



Pio   <   PM<... (1) 
Pi0   <   I-SjS*>,    j = l,2,... (2) 

Pj+i,o5(/-Fio)   =   0,    j = l,2,.... (3) 

For U : £ -4 £ a minimal isometric dilation of the given contraction T, let B : Q -> "W 
intertwine 5 with £/, that is, 

UB = BS. (4) 

From this it is easy to see that 

(I - UjU*j)B = (J - UjU*j)B(I - SjS*j),    j = 1,2,.... (5) 

We can now define "causality": 

Definition. An operator B satisfying (4) is called (Pio, P20, ■ ■ .)-causal (and if the sequence 
{Pjo}^Li is fixed, causal) if 

(/ - UjU*j)B = (/ - UjU*j)BPj0,    j > 1, (6) 

or equivalently, 

(I-Pj0)B* = (I-Pj0)B*UjU*j,    j>l. (7) 

Note that B is always (I—SS*, I—S2S*2,.. .)-causal. We now fix the sequence P10, P20, ■ ■ ■ 
relative to which causality will be taken in the sequel. Let A : Q —t 7L be an operator 
intertwining S and T, that is, AS = TA. Then an intertwining lifting (or dilation) of A is an 
operator B :Q —>■ K, such that BS = UB, and PB = A where P : K. —*H denotes orthogonal 
projection. 

Define 
^oo(^4) := mf{||P|| : -B is a causal intertwining dilation of A}, 

and 

p(A) := min{M > 0 : p|| < M, ||(7 - Pjo)A*h\\ < M\\T*jh\\, heU, j> 1}. 

We can then show that ß(A) < Uoo(A). 
We will also need a functional which lies between fi{A) and ^(A). To this aim, we call 

a sequence of operators Tj : Qj := (I — PQJ)Q —>• 71, j = 0,2,... a resolution of A if 

To   =   A, 
rj\gj+1  = rri+1  v/>o, 

r,- = Tj^siGj vy>o. 
(Note that we take P0o := 0, so that Q0 — Q.) We now define 

ß(A) := 

min{M > 0 : \\A\\ < M and there exists a resolution of A, Tj, with ||r\,|| < M,   Vj > 0}. 

We can now state the following results from [81]: 



Theorem 1 (Causal Commutant Lifting Theorem) Notation as above. Then 

v00{A)=p,{A). 

We also have the following variant of Theorem 1: 

Corollary 1 7/kerT = {0}, then fi(A) = u^A). 

Using these ideas, for the compressed shift (the case which arises in control), we can give an 
explicit method for designing nonlinear causal compensators which extends linear H°° theory 
to nonlinear systems [66, 67]. This is done by using a rather straightforward procedure by 
which the construction of a causal dilation may be reduced to a classical interpolation problem. 

We will now briefly indicate how the above theory looks for analytic mappings on Hubert 
space, following [81]. Accordingly, consider an analytic map <j> with Q = H = H2 (the 
standard Hardy space on the disc D). Clearly, 

H2 <g> • • ■ <g> H2 = {H2)®n S H2(Dn) 

where we map 1®---®Z®---®1 (z in the i-th place) to z,-, i = 1, • • •, n. In the usual way, 
we say that <j> shift-invariant (or time-invariant) if 

(j>nS®n = S<t>n    Vn>l, 

where S : H2 —> H2 denotes the canonical unilateral right shift.   (Equivalently, this means 
that S4> = <f> o S on some open ball about the origin in which <j> is defined.) 

Next set 
PU) := PU) ® "'' ® P(i)  (n times)'    J; ^ x>   n ^ X' 

where 
P{j):=I-S>S*i. 

Then we say that <j> is causal if 

PU)<f>n = P{j)<l>nP$,      j>h    I»>1. 

For <f> : H2 —} H2 linear and time-invariant (i.e., intertwines with the shift), it is easy 
to see that <j> is causal. In the nonlinear setting however, time-invariance may not imply 
causality. See [81] for a concrete example. 

Now it is easy to show that the conditions (1), (2), and (3) given above are verified for 

the PfcJ and so the causal commutant lifting theorem applies. We will next see how this 
may be used to develop an iterative design procedure for the construction of nonlinear robust 
controllers [67, 81, 79, 68]. 



2.2    Iterated Design of Nonlinear Controllers 

In this section, we will indicate how the causal lifting methodology described above leads 
to a natural extension of H°° theory for nonlinear plants. For simplicity, we assume that 
our systems are SISO systems. Define an admissible operator to be an analytic input/output 
operator <f> : H2 —»• H2 which is causal, time-invariant, and <f>(0) = 0. Denote the set of 
admissible operators by Ca. We take the plant P and the weight W to be admissible, and we 
assume that W admits an admissible inverse. 

Consider the sensitivity minimization (one block) problem of finding 

US := inf sup ||[(7 + P o C)"1 o W]v\\, (8) 
c IMI<* 

where we take the infimum over all stabilizing controllers. (In what follows, we let || || denote 
the 2-norm || 112 on H2 as well as the associated operator norm. The context will make the 
meaning clear.) Hence we are considering a worst case disturbance attenuation problem where 
the energy of the signals v is required to be bounded by some pre-specified level <5. (In the 
linear case since everything scales, we can always without loss of generality take 5 = 1. For 
nonlinear systems, we must pre-specify the energy bound.) Using standard transformations, 
one gets that (8) is equivalent to the problem of finding 

HS= inf   sup ||(W-Pogr)u||. (9) 
*€ ° IMI<* 

Our iterated lifting procedure gives an approach for approximating a solution to this type 
of problem. Indeed, we express 

W   =   W1 + W2 + ---, 
P   =   p1 + p2 + ..., 
q    =    q1 + q2 + ...j 

where Wj,Pj,qj are homogeneous polynomials of degree j. Note that 

pis = 6   inf   11^-^x11 + 0(S2), (10) 
9lfcrt°° 

where the latter norm is the operator norm (i.e., H°° norm). From the classical commutant 
lifting theorem we can find an optimal (linear, causal, time-invariant) qii0pt 6 H°° such that 

tiS = S\\W1-P1q1,opt\\ + 0(62). (11) 

Now the iterative causal commutant lifting procedure gives a way of finding higher order 
corrections to this linearization. We illustrate the method via a second order correction. So, 
having fixed the linear part qif0pt of q in (9), we observe that 

W{v) - P(q(v)) - (W, - Piqhopt)(v) = 

W2(v) - P2{qi,opt{v)) - Piq2{v) + higher order terms. 

Regarding W2, P2, ft as linear operators on H2 <g> H2 = H2(D2, C), we get that 

sup \\(W-Poq)(v)-(W1-P1qlt0pt)v\\<52\\W2-Plq2\\ + 0(83), 
IMI<* 



where the "weight" W2 is given by 

W2 := W2 - Pi{qi,opt ® qi,oPt)- 

Using the control version of the causal commutant lifting theorem (see [67] and Section 2.3), 
we can derive an optimal admissible q2&pt, and so on. This is our iterated lifting approach to 
nonlinear H°°. 

Consequently, instead of just designing a linear compensator for a linearization of the 
given nonlinear system, this technique allows us to explicitly take into account the higher 
order terms of the nonlinear plant, and so to increase the ball of operation for the nonlinear 
controller. Further, if the linear part of the plant is rational, then we have shown that the 
iterative procedure may be reduced to a series of finite dimensional matrix computations. 
(See [67, 78] for details.) 

2.3    General Formulation of Standard Problem 

The methods we have described above have been extended to the full nonlinear standard 
problem. We will indicate in this section, a formulation of the causal commutant lifting 
theorem which is easily implementable for a nonlinear version of the standard control problem. 
This is based on [69]. 

Accordingly, for the standard problem, we have the following general mathematical frame- 
work. Let £1, £2, T\, T2 be Hubert spaces equipped with the unilateral shifts Ss1, Ss2, Sjrx, S?2, 
respectively. Let ©i : £\ —> T\ be a co-isometry intertwining Ss1 with S^ (i.e., Q\Ss1 = 
«S^jGi), and let ©2 : T2 —> £2 be an isometry intertwining Se2 with Sp2. We let Usx, be the 
minimal unitary dilation of Ss1 on K.£l, and similarly for Uc2 on K.£2, U^ on K.?x, and Uj?2 

on K-jr2. 
Now let 

P|2
n) := (/ - Sn

£2S?2),   pW := (/ - S£2S%),    n > 0. 

We let the sequence Pg    define the causal structure on £2, and similarly the causal structure 

of T2 is defined by the sequence Py'. Moreover, the causal structure on £\ is defined by a 

general sequence of operators P\ \ n > 0 satisfying the causal structure conditions (1), 2, 
3) given above, and similarly the causal structure on T\ is defined by a sequence of operators 
P2 , n > 0 satisfying these conditions as well. We assume that the input/output operators 
61, ©2, are causal with respect to the above structures. We let W : £\ -> £2 denote a 
causal operator intertwining Sex with Se2. Thus causality for W means that P^'WP^    = 

PgW, Vn > 0. Finally, Q : T\ -*■ T2 will denote a causal operator intertwining S^ with 
Sr2. 

Next let 
4n) := (I - Pin))£i,   Vn>0, 

and 
Wn:=SgW\£[n). 

Set   
c(c) c(c°) cl    — cl    » 



where 
00 

£i(c0) ■•= U Ue!sij) C JC£l,  S<? := U£l\s[c\ 
3=0 

Finally, we define Wc : S^' —t £2, by 

Wcg := Wngn, 

for g = Z7|"5,u gn € £} , n > 0. Now we can make a similar construction on the spaces 
£2^11^2- In particular, for a causal Q : T\ -> .F2, such that QSJF, = Sj?2Q, we can define 
Qc : T[

CO)
 -+ F2, where 

00 

£^ := (J U^\ 
3=0 

Clearly both Wc and Qc extend by continuity to the closure s[c\ respectively F^ = !F[C0\ 
Further, 

ll^|| = ||^||, Wc\£l = W, WcS^ = Se2Wc, 

and 

\\W-Q2QQ1\\ = \\(W-Q2QQ1)C\\. (12) 

We put 
ß(W, 6i, G2) := inf{||W - 02Q0!|| : QS^ = S?2Q). 

This is a general formulation of the classical standard control problem. We also set 

Hc(W,eue2) := inf{||iy- e2Q6i|| : Q causal, QS^ = Sr2Q}. 

This is the general formulation of the causal standard control problem. 
Let 0i : K.£1 —> K.jry denote the extension of the co-isometry 0! : £1 —)■ Tx, that is 

uniquely defined by 

Note that ©! is also isometric and &iUe1 = #>,0i. We now have following theorem [69]: 

Theorem 2 (Control Causal Commutant Lifting Theorem) Notation as above. 

1. //C(W,01,02) = MWC,01|£:1
(C),02). 

2- Qopt is a causal optimal solution, i.e., 

»c(w,Qi,e2) = \\w-o1QoptQ2\\ 

if and only ifQopt,c is such that 

ii(wc,e1\£[c\e2) = \\wc-e2Qoptß1\£ic)\\. 



We summarize how the classical standard problem can be solved using the commutant lifting 
theorem. Define 

%x := £lc)e(Gi\£ic)y£ic\ 
7*2    :=   £2e©2->r2- 

Let P : £2 —>■ 7*2 denote orthogonal projection. Then we define the operator 

A = A(Wc,Ö1\£1
[c\o2) :Hi ->fl2l (13) 

by 

Ah:=PWch,   he Hi. (14) 

Then using the commutant lifting theorem [193], one may show that 

\\A\\ = fi(wc,ol\4
c\e2). 

From the control causal commutant lifting theorem, we conclude the following: 

Corollary 2 Notation as above.  Then 

fic(w,e1,e2) = \\A(wc,e1\£lc),e2)\\. 

The key point to note is that Theorem 2 and Corollary 2 reduce a causal optimization 
problem to one involving classical interpolation. This we will exploit for the nonlinear stan- 
dard problem. 

2.4    Control Formulation of Nonlinear Standard Problem 

We have just described the mathematical framework into which the nonlinear standard prob- 
lem may be put. We will now give some details about this physical control problem itself. 

Let Hk denote the standard Hardy space of Cfc-valued functions on the unit disc. As in 
Section 2.2, we say an analytic input/output operator <f>: Hk —>• Hm is admissible if it is causal, 
time-invariant, majorizable, and </>(0) = 0. The space of admissible operators is denoted by 
Ca. For simplicity, Ca will denote the set of admissible operators for any k and m. We now can 
define the control problem. Referring to Figure 1, G represents the generalized plant which 
we assume is modelled by an admissible operator, and K the compensator. Let !F(G, K) 
denote the input/output operator from w to z. Then we want to "minimize" T{G, K) over 
all inputs of bounded energy (of fixed given bound) in the sense which will be given below. 

For admissible G, we can write 

F{G,K) = W-PoQoR, 

for admissible operators W, P, R which depend only on the generalized plant G. We follow 
here the convention that for given <f> e Ca, 4>n will denote the bounded linear map on the 
space {R~l)®n Si H2(Dn, CK) (with K = kn) associated to the n-linear part of <f> which we 



z * 

Figure 1: Standard Feedback Configuration 

also denote by <f>n. We can define the notions of "optimality" and "amelioration" just as 
in [67, 79]. We will now indicate an iterative procedure as in Section 2.2 which leads to an 
optimal design in the standard nonlinear setting derived by solving a sequence of linear H°° 
problems. 

For the admissible operators W, P, R, we suppose that Pi (the linear part of P) is an 
isometry, and that R\ is aco-isometry. Using the above notation, we take S\ := H2(Dn, Ckl), 
£2 ■■= H2(D, Cfc*), Tx := H2(Dn, C*»), and T2 := H2(D, Ck*). Then one may show 

(PoQoR)n=   £ £      P,(Qtl(P®''),...,Qtfc(l?®'*)). 
l<k<n «H Vik=n 

Note that we may in term write that 

Qj{R^)=  £ QARk^.-.^Rk,). 
kit...,kj 

(W-PoQoR)n = Wn- PiQ„(Pf n), 
Thus we see that 

where 
Wn = Wn + A{Ql,...,Qn-1), 

and A(Qi,...,Qn-i) is an explicitly computable function of Qi,.. .,Qn-i- 
Here then is an iterative procedure to approximate a nonlinear causal compensator. From 

the classical commutant lifting theorem, we may choose Q\ causal such that 

||W^ - f»iQifiiH = ||A(W^, Äls />0||. 



Having chosen Qi, we can choose a causal Q2 such that 

\\W2 - piQiR2 - P2(QiRi ® Q1Ä1) - PMRi <s> Äi)|| 

= ||A((W2 - PlQiR2 - PtiQiRi ® QiRi)c, R{®Ri \s[c\ Px)\\. 

Inductively, given causal Qi,.. .,Qn-i, we may choose Qn causal such that 

H^»-ftQ«(ÄfB)ll = l|A((^»)e,Äf;,|^(e),/\)||. (15) 

As before in each step of the procedure, the new "weight" Wn is determined by Wn, Pi,Rfn, 
and the optimal causal parameters chosen. Thus, we have a series of causal lifting problems 
each of which may be reduced to a classical dilation problem 

As in [79], we may prove that optimal compensating parameters always exist. For the 
spaces £x := H2(Dn,Cki), £2 := H2(D,Ck>), Tx := H2{Dn,Ck3), and T2 := H2(D,Ck<), 
we are now working on expressing Theorem 2 as a "reduction theorem" (via the Fourier 
representation), using similar techniques as in [67]. In the next several months, we will be 
developing the above framework into an implementable design procedure. Accordingly, we 
are having a student, program part of the procedure symbolically in Mathematica. We will 
use our skew Toeplitz methods to realize the linear steps in the iterative construction of 
the nonlinear compensator. We then plan to apply this to some specific nonlinear design 
examples. For some results in this regard, see [66, 67]. 

3    Robust Control of Distributed Parameter Systems 

Under AFOSR-AF/F49620-94-1-00S8DEF, we have continued our research into the control of 
distributed parameter systems using the frequency based skew Toeplitz theory which we have 
developed for H°° optimization. In 1996, our monograph [71] appeared which explains in 
great detail this methodology in a completely self-contained manner together with a number 
of illustrative design examples. We will now briefly review some relevant facts on which this 
approach is based as well as the newer methods which were given in [71]. 

Skew Toeplitz theory gives a practical way of computing the optimal .//^-performance 
and the corresponding optimal and suboptimal controllers for distributed parameter systems. 
Indeed, via this methodology the standard if°°-optimization problem can be reduced to a 
finite dimensional matrix problem even in the infinite dimensional case. Matlab code has 
been written to implement the whole scheme. 

3.1    Mixed Sensitivity Optimization 

To illustrate our methods, we will sketch how several two block if^-minimization problems 
reduce to the computation of the norm of a certain skew Toeplitz operator, and indicate how 
this norm may be computed. We begin with some notation. The Hardy spaces H2 and H°° 
are defined on the unit disc in the standard way. We denote 

RH°° := {rational functions in H°°} . 

We consider the standard feedback configuration with the plant 

a. 
P=<V 

10 



where Gn G H°°, Gd G RH°°. We assume that (i) Gn = mnGno, where mn € Hc 

(arbitrary) and Gno G H°° is outer, and (ii) G„, Gd have no common zeros in the closed unit 
disc. We also write Gd = rridGdo where mj G i?H°° is inner and Gdo G i?if °° is outer. Under 
these assumptions there exist X G RH°° and Y G i/°° such that 

XGn + YGd = l. (16) 

The set of all controllers which stabilize the plant can now be written in the form 

X + QGd 
Y-QGn 

for some Q G H°°. Now let S := (1 + PC)'1 and note that 

5 = 1- XGn - QGnGd. (17) 

In [138, 139], using the commutant lifting theorem, we showed that the computation of 

fi =       inf 
stabilizing C 

WtS 
W2(S-1) 

where W\, W<i G RH°° are given weighting functions with W1
1,W2

1 E RH°° may be reduced 
to computing the norm of the operator 

A:= PHimv)(Wo(S)-Wo(S)m(S)) 
G0(S) 

(18) 

where S : H2 —► H2 denotes the unilateral shift, H(mv) := H2 G mvH
2 and P//(m„) the 

orthogonal projection onto H{mv), for m,mv inner functions associated to the plant and 
weighting filters, and where Wo, Wo, Go are rational H°° functions computed from the plant 
and weighting filters. This reduction is true for plants with arbitrary outer parts. 

In [138, 139], we developed an approach to computing the singular values and vectors of 
operators of the form (18). We remark here that it is easy to compute the essential norm of 
the operator A, which will be denoted by ||A||e. We can now state the following result: 

Theorem 3 Let n denote the maximum of the McMillan degrees of the weighting filters W\ 
and W2, and let I denote the number of unstable poles of the plant P. Then the singular 
vectors and values of A which are > ||j4||e may be derived from an explicitly computable 
system of3n + 2£ linear equations (the "singular system"). 

In [139], the singular system of equations is explicitly written down. Again the number 
of equations only depends on the McMillan degrees of the weighting filters, and the number 
of right half plane poles of the plant. The computation of the maximal singular value and 
the associated singular vectors of A, then allows us to find the optimal performance p, of our 
original control problem and the corresponding optimal compensator. (Similar results have 
been worked out in Flamm-Yang [61]. The mixed sensitivity optimization problem for stable 
distributed plants was first solved in Zames-Mitter [194].) 

Several benchmark examples have been worked out using this methodology including 
problems in flight control [53], and the control of flexible beams [115]. 
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3.2    Young Operator 

In most typical frequency domain techniques, the standard problem needs to be put into 
a certain four block form (this was illustrated above in the two block case; see also [85]). 
This reduction involves a number of factorizations, some of which are quite difficult and 
time-consuming to perform. Indeed, a major advantage of state space methods [52] is that 
these factorizations may be avoided. On the other hand, one of the key disadvantages of 
these state space methods is that their practical applicability to distributed systems seems to 
be very difficult. (On an infinite dimensional state space one gets infinite dimensional, i.e., 
operator-valued Riccati equations. See [48].) 

In our monograph [71], these issues have been treated by using the so-called Young operator 
[193]. We would like to sketch this approach very briefly now. 

Recall that via the Youla parametrization, the standard problem may be formulated as 
finding 

Qa.liri-raor3|U 
where Ti,T2,T3,Q are matrix-valued H°° functions of compatible sizes. More precisely, let 
£i,Fi denote finite dimensional complex Hilbert spaces for i = 1,2. Then we take T\ £ 
H°°{£u£2), T2 E H°°(F2,£2), Tz e £r°°(£i, Ji), and the parameter Q € H°°{TUT2). (In 
general, for two complex separable Hilbert spaces £,T we define H00(S,T) to be the space 
of all uniformly bounded analytic functions in the open unit disc, whose values are operators 
from £ to T.) 

Let 

Tix    :=   T3-
1F2(^1) 

:=   {/ei2(A): Ta/Gi/Vi)}, 
■H2   :=   L2(£2)e(T2H

2(F2))-. 

Define the operator (see [193], [85], [63]) A : U\ -»• H2 by 

Af := P-H^f, 

where Pu2 denotes orthogonal projection on %2. Then using the commutant lifting theorem, 
one may show that 

gg.Hri-r^r3llco = l|A||. 

In [71], we have parametrized the optimal compensators directly from the Young operator 
along the same lines that we followed for the four block problem ([72, 73, 140]), completely 
avoiding the reduction of the standard problem to its four block form. 

4    Structured Perturbations 

Under AFOSR support, we have been carrying out research in the analysis and synthesis of 
robust feedback control in the presence of structured uncertainty models using the structured 
singular value methodology pioneered by Doyle and Safonov [50, 150]. During AFOSR- 
AF/F49620-94-1-00S8DEF, we have formulated a novel ampliation or lifting approach for the 
study of robustness with respect to a number of key perturbation classes. Details about our 
work on the structured singular value may be found in [23, 21, 22, 29, 24]. 
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4.0.1    Lifting of Structured Perturbations 

In this section, we will discuss some of the key aspects of the lifting method we developed to 
analyze the structured singular value. In order to do this, we will first need to make some 
preliminary definitions. 

Let A be a linear operator on a Hubert space £, and let A be an algebra of operators on 
£. The structured singular value of A (relative to A) is defined by 

fiA(A) := l/inf{||X||: X € A, -1 <E a{AX)} . 

(This quantity was defined in [50, 150] under a more restrictive context.) In robust system 
analysis, //A (-4) gives a measure of robust stability with respect to certain perturbation mea- 
sures. Unfortunately, HA(A) is very difficult to calculate, and so in applications an upper 
bound is employed. This upper bound is given by 

JlA(A) := inffll^AX-1!! : X € A',X invertible}, 

where A' is the commutant of the algebra A. 
The basic result underlying the lifting approach is that fi-A (A) can be shown to be equal 

to the structured singular value of an operator on a bigger Hubert space. (In [27] this was 
done for finite dimensional Hubert spaces, and then in [24] this was extended to the infinite 
dimensional case. For another proof of this type of lifting result in finite dimensions, see [56].) 
The problem with this work is that the size of the ampliation necessary to get p,& (A) equal to 
a structured singular value, is equal to the dimension of the underlying Hubert space. Hence 
in the infinite dimensional case we needed an infinite lifting. (Note that in this context, we 
will be using the terms "ampliation" and "lifting" interchangeably.) A new result that came 
out of the work in [27] was that for the first time the upper bound fi was rigorously shown to 
be continuous. 

Now in the recent paper [23], we have shown that in fact, one can always get by with a 
finite lifting. For the block diagonal algebras of interest in robust control, the lifting only 
depends on the number of blocks of the given perturbation structure. 

We will denote by £(£) the algebra of all bounded linear operators on the (complex, 
separable) Hubert space £. Fix an operator A G £(£) and a subalgebra A C £(£). Observe 
that A C A" and A'" = (A")' = A' so that we have the inequalities 

MA (A) < HA»{A),   fiA(A) = J1A"(A) . 

In our study we will need further singular values which we now define. For «6(1,2,..., oo} 
we denote by £(") the orthogonal sum of n copies of £, and by T^ the orthogonal sum of n 
copies of T € £(£)• Operators on £*"' can be represented as n x n matrices of operators in 
£(£), and T(n> is represented by a diagonal matrix, with diagonal entries equal to T. 

Denote by A„ the algebra of all operators on £(") whose matrix entries belong to A, and 
observe that (An)" = (A")n, and (An)' = (A')W = {T^ : T € A'}. Therefore we will 
denote these algebras by A" and A'n, respectively. 

We can now formulate our lifting result from [23], relating HA(A) and J1A(A). The proof 
of the theorem makes use of some of our operator-theoretic work on the relative numerical 
range, and the continuity of the spectrum on closed similarity orbits in [21, 22]. 
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Theorem 4 Assume that A' is a *-algebra of finite dimension n. Then 

for every A e£{£). 

In the cases of interest in control, A" = A, and so one has from Theorem 4 that p,An (A) = 
//A (A). 

4.0.2    Nonconservative Measures of Robustness 

We will discuss some of the conditions from [23] when \i = fi without any need for lifting. In 
such cases, fi gives a nonconservative measure of robustness relative to the given perturbation 
structure. For constant matrices, the most famous result of thsi kind is due to Doyle [50], 
who showed that no lifting is necessary for perturbation structures with three or fewer blocks. 

First of all, call critical any AQ G OA> (A) satisfying 

lim sup ||(/ - eX)A0(I - eX)"^ > ||A0||, VX € A'. 

Then we have 

Lemma 1 If AQ is a critical operator in ö&i{A), then it enjoys the following property (Ö): 

0 G WQ(PO||
2
X - A*0XA0), X € A', 

where Q = ||A0||
2/ - A*0A0. 

The next lemma is the key step in adapting the proof of Theorem 4 in order to show that 
JJ-A{A) = PA(A) in several interesting cases. 

Lemma 2 Let AQ be an operator on £ which satisfies the essential version of property (Ö), 
property (Ö0), namely 

0 € Wg(Po||2* - A*0XA0), X e A', 

where Q = ||A0||
2/ — AQA0. Then there exists a sequence {hk}^ C £, \\hk\\ = 1, k = 1,2,..., 

such that 
Qhk ->■ 0 strongly and ({\\A0\\2X - AoXA0)hk, hk) -» 0, 

for all X e A'. 

We will also need the following result: 

Theorem 5 If there exists a critical operator AQ satisfying property Ö0 in the closed A'-orbit 
of A, then 

HA" {A) = fiA(A). 
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Remark. Under the hypotheses of Theorem 5, when A" = A (which happens in all cases of 
interest in control), we have that 

flA{A)=ßA(A). 

Let L(A'AA') denote the linear space generated by 

A'AA' = {XAY :X,Y e A'}. 

Obviously L(A'AA') is finite dimensional, and therefore closed. Hence OA'(A) C L(A'AA'). 

Corollary 3 If for every B G L(A'AA'), B^O, the norm of B is not attained (that is, 
there is no he U such that \\Bh\\ = \\Bßh\\ ^ 0), then 

HA" (A) = fiA(A). 

We can now use our lifting methodology in order to derive an elegant result of Magretski 
[120], and Shamma [162] on the structured singular value of a Toeplitz operator, i.e., a linear 
time invariant system. See also [56, 102, 103] for related work in this area. 

Let £ = H2(Cn) and let A denote the multiplication (analytic Toeplitz) operator on £ 
defined by 

(Ah)(z) = A(z)h(z),   \z\<l, h££, 

where 
A{z) = [ajk\lk=l,   \z\<l, 

has H°° entries. Let A' be any *-subalgebra of £(Cn), the elements of which are regarded 
as multiplication operators on £. Note that in this case, A" = A is the algebra generated by 
operators of the form 

(Bh){z) = B(z)h{z),   |z|<l, he£ 

with B{z)X = XB(z), \z\ < 1, X e A' as well as of the form 

B 

hi 
h2 

vn  . 

y/ii 
Yh2 

Yhn 

with Y G C(H2(C)) arbitrary. We can now state: 

Lemma 3 Let AQ he an analytic Toeplitz operator. Then if AQ has property (Ö), it also has 
property (Ö0). 

Corollary 4 ([120, 162]) For A and A' as above, we have that 

HA{A) = AA(A). 
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4.1    General Input-Output Operators 

It is of interest to put some the general results stated above into a system-theoretic framework. 
Let l\ be the space of square summable one-sided sequences in C, let C denote the set of all 
bounded linear operators on i\. Further, let A : £+(Cn) —*■ ^.(Cn) be an arbitrary bounded 
linear operator. Thus A defines a (possibly) time-varying system. (Here ^j.(Cn) the space 
of of square summable sequences in Cn, i.e., the space of finite energy vector-valued signals 
with n components.) Then we want to interpret /2A (A) as a structured singular value on an 
extended space with an enhanced perturbation structure. Note £ in this case is the Hubert 
space £\(Cn). 

Define the algebra of perturbations 

A:={ 

<*i    0 
0    52 

0     0 

Then the commutant of A 

A':={ 

dt    0 
0    d2 

0     0 

Note that a constant d £ C 

0 
0 

: Si eC,i=l,...,n}. 

is the finite dimensional C*-algebra, 

: di € C, i = l,...,n}. 

0 
0 

d„ 

defines an operator on £^_ via multiplication. 
We now have the following interpretation of JIA(A). We lift A to A^ : £(") —>• £^n\ Then 

(An)" S { 

Ai     0      0      0 
0     Ä2     0      0 

: Äi G A}. 

0      0     ...   A„ 

(A„)" is a space of time-varying perturbations, and we have from Theorem 4 that 

ßA(A) = w,(AW). 

This is true for arbitrary time-varying systems A.  In case A is Toeplitz, i.e., the system is 
time-invariant, then as we have seen, 

ßA(A) = fiA(A). 

5    Visual Tracking 

As a key application of the robust control techniques we have been developing over the past 
few years, we have been considering the problem of visual tracking. This has led us to consider 
relevant problems in active vision and image processing which we have been treating using 
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certain invariant geometric flows which we will now very briefly describe. It is important to 
note that these equations themselves are very much motivated by ideas in optimal control; 
see [110] and the references therein. 

One of the key techniques in active vision and tracking is that of deformable contours 
or snakes. These are autonomous processes which ultilize image coherence in order to track 
features of interest over time. After some preliminary remarks about curve evolution, we will 
discuss our snake model from [104]. 

5.1    Planar Curve Evolution 

The theory of planar curve evolution has been considered in a variety of fields such as differ- 
ential geometry [87, 90, 130, 131, 152], theory of parabolic equations [6], numerical analysis 
[135, 158], computer vision [58, 59, 107, 108, 105, 144, 148, 153, 109, 180], viscosity solutions 
[88, 55, 168], phase transitions [93], and image processing [3, 148, 149, 156]. 

Formally, let C(p, t) : S1 x [0, r) -)• R2 denote a family of closed embedded curves, where 
t parametrizes the family, and p parametrizes each curve. We assume that this family evolves 
according to the following equation: 

\C(p,0) = Co(p), [U) 

where N is the inward Euclidean unit normal, T is the unit tangent, and a and ß are the 
tangent and normal components of the evolution velocity P, respectively. One can show that 
Img[C(p, t)] = lmg[C(w, t)], where C(p, t) and C(w, t) are the solutions of 

Ct = at + ßM and Ct = ßAf, 

respectively. (Here Img[-] denotes the image of the given parametrized curve in R2.) Thus the 
tangential component affects only the parametrization, and not Img[] (which is independent 
of the parametrization by definition). Therefore, assuming that the normal component ß of V 
(the curve evolution velocity) in (19) does not depend on the curve parametrization, we can 
consider the evolution equation 

dC -> 
W = /?^, (20) 

where ß = V ■ N, i.e., the projection of the velocity vector on the normal direction. 
The evolution (20) was studied by different researchers for different functions ß. One of 

the most important of such flows is derived when a planar curve deforms in the direction of 
the Euclidean normal, with speed equal to the Euclidean curvature, i.e., when ß = K, for K is 
the Euclidean curvature: 

IT = KM- (21) 
The flow given by (21) is called the Euclidean shortening flow, since the curve perimeter 

shrinks as fast as possible using only local information [90]. Gage and Hamilton [87] proved 
that a simple and smooth convex curve evolving according to (21), converges to a round 
point.   Grayson [90] proved that an embedded planar curve converges to a simple convex 
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one when evolving according to (21), and so any embedded curve in the plane converges 
to a round point via (21). For other results related to the Euclidean shortening flow, see 
[5, 6, 87, 90, 91, 109, 184]. 

Next note that if v denotes the Euclidean arc length, then [169] 

A?       d2C 

Therefore, equation (21) can be written as 

Ct = CVV. (22) 

Equation (22) is not linear, since v is a function of time (the arc length gives a time dependent 
parametrization). Equation (22) is also called the geometric heat equation. 

Recently, we introduced a new curve evolution equation, the affine geometric heat floiu 
[152, 153]: 

dC(P,t) = d2C(p,t) 
dt ös2    ' (23) 

C(P,0) = Co(p), 

where 

>(p) = f\cp, Jo 
CPPP

3dP, (24) 

is the affine arc length ([CS,CSS] = 1), i.e., the simplest affine invariant parametrization [34]. 
Css is called the affine normal [92]. In contrast with the Euclidean version, the affine arc 
length is based on area, and not on length (note that [CP,CPP] is the oriented area between 
Cp and CpP). This is clear since length is not affine invariant, whereas area is the simplest 
geometric affine invariant. This evolution is the affine analogue of equation (21), and admits 
affine invariant solutions, i.e., if a family C(p, t) of curves is a solution of (23), the family 
obtained from it via unimodular affine mappings, is a solution as well. We have shown that 
any simple and smooth convex curve evolving according to (23), converges to an ellipse [152]. 
Since the affine normal Css exists just for non-inflection points, we formulated the natural 
extension of the flow (25) for non-convex initial curves in [153, 155]: 

dC(p,t) __ ( 0, pan inflection point, ,    . 
dt     ~{Css(p,t),   otherwise, W 

together with the initial condition C(p, 0) = CQ(p). The flow (25) defines a geometric, affine 
invariant, multiscale representation of planar shapes. Indeed, in [153], we proved that this 
flow satisfies all the required properties of (morphological) scale-space such as causality and 
order preservation. For this flow, we proved (see also [7]) that the curve first becomes convex, 
as in the Euclidean case, and after that it converges into an ellipse according to the results 
of [152]. An equivalent model was independently derived in [4] from a an elegant axiomatic 
point of view. See [153] for a number of explicit examples of planar shape smoothing. 

We should also add that in [155], we give a general method for writing down invariant 
flows with respect to any Lie group action on R2. The idea is to consider the evolution given 
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by Ct = Crr where r is the group invariant arc length. This was formalized, together with 
uniqueness results, in [130], and extended to hypersurfaces in [131]. Results for the projective 
group were recently reported in [57, 58]. 

In great generality, the following result gives the form of an invariant flow for a hypersur- 
face in an arbitrary number of space dimensions p: 

Theorem 6 Let G be a transformation group, and let Ldx = Ldx1 A ... A dxp be a G- 
invariant Lagrangian with nonzero variational (Euler-Lagrange) derivative E(L). Then every 
G-invariant evolution equation has the form 

Ui=EjL)1' (26) 

where I is a arbitrary differential invariant of G. 

The Euclidean group is a special case of a volume-preserving transformation group G. 
This means that it leaves the (p + l)-form dx A du = dx1 A • ■ • A dxp A du invariant. 

Proposition 1 Suppose G is a connected transformation group, and Ldx a G-invariant 
p-form such that E(L) ^ 0. Then E(L) is a differential invariant if and only if G is volume- 
preserving. 

Corollary 5 Let G be a connected volume preserving transformation group. Then, up to 
constant multiple, the G-invariant flow of lowest order has the form 

ut = L, (27) 

where u = L dx1 A ... A dxp is the invariant p-form of minimal order such that E(L) ^ 0. 

These results allow one to write down the simplest invariant flows in any dimension with 
respect to any transformation group. 

5.2    Euclidean image processing 

In this section, we review a number of algorithms for image processing which are related to 
the Euclidean shortening flow (21). The algorithms were developed in continuous spaces, and 
tested on digital computers by very accurate and stable numerical implementations. These 
numerical implementations were developed by the various authors for their specific algorithm. 
Only the basic concepts of the algorithms are given here. For more details, see the appropriate 
references given below. 

In general, 3>o : R2 —*■ 1R+ represents a gray-level image, where $0(3;, y) is the gray-level 
value. The algorithms that we describe are based on the formulation of partial differential 
equations, with $0 as initial condition. The solution $(x,y, t) of the differential equation 
gives the processed image. 

Osher and Rudin [134] formulated a method for image enhancement based on shock filters. 
In this case, the image $(a?,y, t) evolves according to 

*t = -||V*||F(£(*)), (28) 
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where the function F(u) satisfies certain technical conditions (given explicitly in [134]), and C 
is a second order (generally) nonlinear elliptic operator. An image evolving according to (28) 
develops shocks where C = 0. One of the goals of this method is to get as close as possible to 
the inverse heat equation [134]. The algorithm was tested on images artificially degraded by 
the classical diffusion equation, and very good "inverse" diffusions were obtained. 

Rudin et al. [149] presented an algorithm for noise removal, based on the minimization of 
the total first variation of $, i.e., 

/        || V$ || dxdy. (29) 
J Image 

The minimization is performed under certain constraints and boundary conditions (zero flow 
on the boundary). The constraints they employed are zero mean value and given variance a2 

of the noise, but other constraints clearly can be considered as well. More precisely, if the 
noise is additive, the constraints are given by 

/ $dxdy= I $0dxdy, f       ($ - $0)2 dxdy = 2a2. (30) 
J Image J Image J Image 

Note that K, the Euclidean curvature of the level-sets, is exactly the Euler-Lagrange derivative 
of this total variation. Then, for the minimization of (29) with the constraints given by (30), 
the following gradient-descent flow is obtained: 

$t = K-A($-$0), (31) 

and the solution to the variational problem is given when $ achieves steady state. The 
level-sets curvature K may be computed via standard formulas for curves defined by implicit 
functions. The quantity a is used in the computation of A. The authors computed A from 
the steady state solution ($t = 0). Rudin and co-workers have in general shown these total 
variational methods to be a powerful tool for a number of image processing problems. 

Alvarez et al. [3] described an algorithm for image selective smoothing and edge detection. 
In this case, the image evolves according to 

$4 = *(|| G * V$ ||) || V$ || div (jiüjj) ' (32) 

where G is a smoothing kernel (for example, a Gaussian), and <j>{w) is a nonincreasing function 
which tends to zero as w —>• oo. Note that 

is equal to $^, where £ is the direction normal to V$. Thus it diffuses $ in the direction 
orthogonal to the gradient V$, and does not diffuse in the direction of V$. This means that 
the image is being smoothed on both sides of the edge, with minimal smoothing at the edge 
itself. Note that the evolution 

$* = II V* H div (jfUfi) = * II V* II (33) 
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is such that the level-sets of $ move according to the Euclidean shortening flow given by 
equation (21) [3, 135]. Finally, the term 

*(||G*V*||) 

is used for the enhancement of the edges. If || V$ || is "small", then the diffusion is strong. 
If || V$ || is "large" at a certain point {x,y), this point is considered as an edge point, and 
the diffusion is weak. 

In summary, equation (32) gives anisotropic or edge preserving (and enhancement) diffu- 
sion, extending the ideas proposed by Perona and Malik [145]. The equation looks like the 
level-sets of $ are moving according to (21), with the velocity value "altered" by the function 
<t>(w). 

5.3    Affine image processing 

As we just saw, there is a close relationship between the curve evolution flow (21), and recently 
developed image enhancement and smoothing algorithms (see equation (33)). In this section, 
we consider the use of the affine shortening flow (25) for a similar purpose. 

It is well-known in the theory of curve evolution, that if the velocity V = Ct of the evolution 
is a geometric function of the curve, then the geometric behavior of the curve is affected only 
by the normal component of this velocity, i.e., by < V, Af > . Since the tangential velocity 
component only affects the parametrization of the evolving curve, instead of looking at (25), 
we can consider a Euclidean-type formulation of it. In [152], we proved that the normal 
component of Css is equal to K

1
/
3
^. Since K = 0 at inflection points, and inflection points 

are affine invariant, we obtain that the evolution given by 

Ct = K
1/3

AT , ' (34) 

is geometrically equivalent to the affine shortening flow (25). Then the trace (or image) of 
the solution to (34) is affine invariant. 

It is important to note that the affine invariant property of (34) was also pointed out 
by Alvarez et al. [4], based on a completely different approach. They proved that this flow 
is unique under certain conditions (uniqueness is obtained also from the results in [130]). 
Moreover, they give an extensive characterization of PDE based multiscale analysis, and 
remarked that the flows (21) and (34) are well-defined also for non-smooth curves, using the 
theory of viscosity solutions [47]. This is also true for the corresponding image flows, where 
the level-sets deform according to the geometric heat flows [88, 55] (see below). The existence 
of the Euclidean and affine geometric heat flows for Lipschitz functions is obtained from the 
results in [6, 7] as well. These results on extensions of the flows to non-smooth data are 
fundamental for all image processing applications, since images are non-smooth. The results 
prove that the flows are mathematically correct (well-defined and stable). 

We proceed now to show how the affine curve flow (34) can be extended to process images. 
The technique of embedding a curve as the zero level set in the graph of a surface, and looking 
at the evolution of the level-sets was developed by Osher and Sethian [135], and is frequently 
used for the digital implementation of curve evolution flows. (See also the recent book [160] 
for the numerous uses and a complete set of references about this important method.) Let 
us consider now what occurs when the level-sets of $ evolve according to (34). It is easy to 
show that the corresponding evolution equation for $ is given by 

$t = «i/3 || v$ ||= ($2$xx _ 2$x%$xy + <^$w)i/3. (35) 
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This equation was used in [153] for the implementation of the novel affine invariant scale-space 
for planar curves. It was also used in [4, 156] for image denoising. Note again that, based on 
the theory of viscosity solutions, equations (33) and (35) can be analyzed even if the level-sets 
(or the image itself), are non-smooth; see [4, 88, 47, 55]. This flow is well-posed and stable. 
The maximum principle holds, meaning that the flow is smoothing the image. 

If we compare (33) with (35), we observe that the denominator is eliminated. This not only 
makes the evolution (34) affine invariant [4, 153], it also makes the numerical implementation 
more stable [135]. The 1/3 power is the unique one which eliminates this denominator. This is 
of course an important advantage of the affine flow over the Euclidean one in image processing. 
Moreover, for high curvatures, K

1
'
3
 is smaller than /c, which further prevents sharp regions 

from moving. Finally, since the symmetry group (the affine group) of (35) is much larger 
than that of equation (33) (the Euclidean heat flow), more structure is preserved up to a 
higher degree of smoothing. This phenomenon has been observed, for example, in Niessen 
et al. [128] in which elliptical structures of MRI images of the brain were preserved up to a 
very high degree of smoothing using equation (35). One can combine this smoother with an 
affine invariant edge map as in [132] to perform affine invariant edge preserving anisotropic 
diffusion as in the Euclidean case. 

5.4    Geometric Gradient Active Contours 

In the past few years, a number of approaches have been proposed for the problem of snakes 
or active contours. The underlying principle in these works is based upon the utilization of 
deformable contours which conform to various object shapes and motions. Snakes have been 
used for edge and curve detection, segmentation, shape modelling, and especially for visual 
tracking. The recent book by Blake and Yuille [33] contains an excellent collection of papers 
on the theory and practice of deformable contours together with a large list of references. 

In [104], we have proposed a novel deformable contour model which was motivated by the 
elegant approach in of Caselles et al. [41] and Malladi et al. [122]. (A similar approach was 
independently formulated in [42, 161].) In these works, a level set curve evolution method is 
presented to solve the problem. Our idea is simply to note that both these approaches are 
based on Euclidean curve shortening evolution which in turn defines the gradient direction in 
which the Euclidean perimeter is shrinking as fast as possible. Our snake model is then based 
on the geometric intuition of multiplying the Euclidean arc length by a function tailored to 
the features of interest to which we want to flow, and then writing down the resulting gradient 
evolution equations. Mathematically, this amounts to defining a new Riemannian metric in 
the plane tailored to the given image, and then computing the corresponding gradient flow. 
This leads to some intriguing new snake models which efficiently attract the given active 
contour to the features of interest (which basically lie at the bottom of a potential well). The 
method also allows us to naturally write down 3-D active surface models as well. 

Let us briefly review some of the details from [104]. First of all, Caselles et al. [41] and 
Malladi et al. [122] propose a snake model based on the level set formulation of the Euclidean 
curve shortening equation. More precisely, their model is 

^ = ^,»)||V*||(div(|j||jj) + ^. (36) 

Here the function 4>{x,y) depends on the given image and is used as a "stopping term." For 
example, the term 4>{x,y) may chosen to be small near an edge, and so acts to stop the 
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evolution when the contour gets close to an edge. One may take [41, 122] 

*:= 1 + IIVGWlP' (37) 

where I is the (grey-scale) image and Ga is a Gaussian (smoothing filter) filter. The function 
\P(x,y, t) evolves in (36) according to the associated level set flow for planar curve evolution 
in the normal direction with speed a function of curvature which was introduced in the work 
of Osher-Sethian [135, 159]. 

It is important to note that the Euclidean curve shortening part of this evolution, namely 

is derived as a gradient flow for shrinking the perimeter as quickly as possible. As is explained 
in [41,122], the constant inflation term v is added in (36) in order to keep the evolution moving 
in the proper direction. Note that we are taking ^ to be negative in the interior and positive 
in the exterior of the zero level set. 

We would like to modify the model (36) in a manner suggested by Euclidean curve short- 
ening. Namely, we will change the ordinary Euclidean arc length function along a curve 
C = (x(p), y(p))   with parameter p given by 

ds^izl + Wdp, 
to 

ds4> = <f>(x2p + y2
p)

1/2dp, 

where <f>(x, y) is a positive differentiate function. Then we want to compute the corresponding 
gradient flow for shortening length relative to the new metric ds^. 

Accordingly set 
rl   r)C 

M'):=/o W-^WP- 

denote the unit tangent. Then taking the first variation of the modified length function Lj,, 
and using integration by parts (see [104]), we get that 

L'*{t)  = -j^{t\^4>KM-{V4>-M)ß!)ds 

which means that the direction in which the L<f, perimeter is shrinking as fast as possible is 
given by 

dC 
-^ = (4>K-(V4-WW. (39) 

This is precisely the gradient flow corresponding to the miminization of the length functional 
L$. The level set version of this is 

-^ = 0|| W||div(—) + V0 • V*. (40) 
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One expects that this evolution should attract the contour very quickly to the feature which 
lies at the bottom of the potential well described by the gradient flow (40). As in [41, 122], 
we may also add a constant inflation term, and so derive a modified model of (36) given by 

_ = ^||V*||(div(p^) + i/) + V^-V*. (41) 

Notice that for <j> as in (37), V<f> will look like a doublet near an edge. Of course, one may 
choose other candidates for <j> in order to pick out other features. 

We have implemented this snake model based on the leVel set type algorithms in [135, 159] 
and [122]. We are also studying an affine invariant snake model for tracking based on our 
work in [132]. (The evolution itself works using a level set model of KX

/
3
A? as discussed in the 

previous section.) 
All of our methods are extendable to 3D pictures. Indeed, we have developed affine in- 

variant volumetric smoothers in [131]. We also have 3D active contour evolvers for image 
segmentation, shape modelling, and edge detection based on both snakes (inward deforma- 
tions) and bubbles (outward deformations) based on our work in [104, 192]. 

Finally, we should note that we have developed algortihms for optical flow and stereo dis- 
parity under AFOSR-AF/F49620-94-1-00S8DEF (see [112, 113]) which we will be exploiting 
for visual tracking in our new AFOSR sponsored research contract. 

24 



6    Bibliography 

References 

[1] V. M. Adamjan, D. Z. Arov, and M. G. Krein, "Analytic properties of Schmidt pairs 
for a Hankel operator and generalized Shur-Takagi problem," Math. USSR Sbornik 15 
(1971), pp. 31-73. 

[2] V. M. Adamjan, D. Z. Arov, and M. G. Krein, "Infinite Hankel block matrices and related 
extension problems," Amer. Math. Society Translations 111 (1978), pp. 133-156. 

[3] L. Alvarez, P. L. Lions, and J. M. Morel, "Image selective smoothing and edge detection 
by nonlinear diffusion," SI AM J. Numer. Anal. 29 (1992), pp. 845-866. 

[4] L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, "Axioms and fundamental equa- 
tions of image processing," Arch. Rational Mechanics 123 (1993), pp. 200-257. 

[5] S. Angenent, "Parabolic equations for curves on surfaces, Part I. Curves with p-integrable 
curvature," Annals of Mathematics 132 (1990), pp. 451-483. 

[6] S. Angenent, "Parabolic equations for curves on surfaces, Part II. Intersections, blow-up, 
and generalized solutions," Annals of Mathematics 133 (1991), pp. 171-215. 

[7] S. Angenent, G. Sapiro, and A. Tannenbaum, "On the affine heat equation for non-convex 
curves," submitted for publication. 

[8] G. Balas, R. Lind, and A. Packard, "'Optimally scaled H°° full information control 
with real uncertainty: theory and application," to appear in AIAA Journal of Guidance, 
Dynamics and Control. 

[9] J. Ball, "Nevanlinna-Pick interpolation and robust control for time-varying systems," 
Proceedings SPIE, San Diego, California, February 1996. 

[10] J. Ball, C. Foias, J. W. Helton, and A. Tannenbaum, "On a local nonlinear commutant 
lifting theorem," Indiana J. Mathematics 36 (1987), pp. 693-709. 

[11] J. Ball, C. Foias, J. W. Helton, and A. Tannenbaum, "A Poincare-Dulac approach to a 
nonlinear Beurling-Lax-Halmos theorem," Journal of Math. Anal, and Applications 139 
(1989), pp. 496-514. 

[12] J. Ball and J. W. Helton, "Sensitivity bandwidth optimization for nonlinear feedback 
systems," Technical Report, Department of Mathematics, University of California at 
San Diego, 1988. 

[13] J. Ball and J. W. Helton, UH°° control for nonlinear plants: connections with differential 
games," Proc. of 28th Conference on Decision and Control, Tampa, Florida, December 
1989, pp. 956-962. 

[14] J. Ball and J. W. Helton, "Nonlinear H°° control theory for stable plants," MCSS 5 
(1992), pp. 233-261. 

[15] J. Ball, J. W. Helton, and M. Walker, UH°° control for nonlienar systems with output 
feedback," IEEE Trans. Aut. Control AC-38 (1993), pp. 546-559. 

[16] J. Ball and A. J. van der Schaft, "J-inner-outer factorization, J-spectral factorization, 
and robust control for nonlinear systems," IEEE Trans. Aut. Control AC-41 (1996), pp. 
379-392. 

25 



[17] C. Ballester, V. Caselles, and M. Gonzalez, "Affine invariant segmentation by variational 
method," Technical Report, U. of Illes Balears, 1994. 

[18] T. Ba§ar and P. Bernhard, H°°-Optimal Control and Related Minimax Design Problems, 
Birkhäuser, Boston, 1991. 

[19] H. Bercovici, Operator Theory and Arithmetic in H°°, AMS Publications 26, Providence, 
Rhode Island, 1988. 

[20] H. Bercovici, J. Cockburn, C. Foias, and A. Tannenbaum, "On structured tangential 
interpolation in robust control," Proceedings of 32ndJEEE Conference on Decision and 
Control, Decmeber 1993. 

[21] H. Bercovici, C. Foias, and A. Tannenbaum, "A relative Toeplitz-Hausdorff theorem," 
Operator Theory: Advances and Applications 71 (1994), pp. 29-34. 

[22] H. Bercovici, C. Foias, and A. Tannenbaum, "Continuity of the spectrum on closed 
similarity orbits," Integral Equations and Operator Theory 18 (1994), pp. 242-246. 

[23] H. Bercovici, C. Foias, and A. Tannenbaum, "The structured singular value for linear 
input/output operators," SI AM J. Control and Optimization 34 (1996), pp. 1392-1404. 

[24] H. Bercovici, C. Foias, P. Khargonekar, and A. Tannenbaum, "On a lifting theorem for 
the structured singular value," Journal of Math. Analysis and Applications 187 (1994), 
pp. 617-627. 

[25] H. Bercovici, C. Foias, and A. Tannenbaum "On spectral tangential Nevanlinna-Pick 
interpolation" Journal of Math. Analysis and Applications 155 (1991), pp. 156-175. 

[26] H. Bercovici, C. Foias, and A. Tannenbaum, "On skew Toeplitz operators I," Operator 
Theory: Advances and Applications 32 (1988), pp. 21-43. 

[27] H. Bercovici, C. Foias, and A. Tannenbaum, "On the optimal solutions in spectral corn- 
mutant lifting theory," Journal of Functional Analysis 101 (1991), pp. 38-49. 

[28] H. Bercovici, C. Foias, and A. Tannenbaum, "A spectral commutant lifting theorem," 
Trans. AMS 325 (1991), pp. 741-763. 

[29] H. Bercovici, C. Foias, and A. Tannenbaum, "Structured interpolation theory," Operator 
Theory: Advances and Applications 47 (1991), pp. 195-220. 

[30] H. Bercovici, C. Foias, and A. Tannenbaum, "On skew Toepltitz operators, II," to appear 
in Operator Theory: Advances and Applications, 1996. 

[31] H. Bercovici, C. Foias, and A. Tannenbaum, "Time-varying optimization: A skew Toe- 
pltiz approach," in preparation. 

[32] J. Berg, A. Tannenbaum, and A. Yezzi, "Phase transitions, curve evolution, and the 
control of semiconductor manufacturing processes," Proceedings of IEEE Conference of 
Decision and Control, December 1996. 

[33] A. Blake, R. Curwen, and A. Zisserman, "A framework for spatio-temporal control in 
the tracking of visual contours," to appear in Int. J. Computer Vision. 

[34] W. Blaschke, Vorlesungen über Differentialgeometrie II, Verlag Von Julius Springer, 
Berlin, 1923. 

[35] H. Blum, "Biological shape and visual science," J. Theor. Biology 38 (1973), pp. 205-287. 

26 



[36] D. Bugajski, D. Enns, and A. Tannenbaum "Preliminary mu-synthesis design for the 
ATB-1000," to appear in Proceedings of Tenth Army Conference on Applied Mathematics 
and Computing, West Point, New York, 1992. 

[37] E. Calabi, P. J. Olver, and A. Tannenbaum, "Invariant numerical approximations to dif- 
ferential invariant signatures," Technical Report, Department of Electrical Engineering, 
University of Minnesota, June 1995. To appear as a book chapter. 

[38] E. Calabi, P. Olver, and A. Tannenbaum, "Affine geometry, curve flows, and invariant 
numerical approximations," Advances in Mathematics 124 (1996), pp. 154-196. 

[39] E. Calabi, P. Olver, C. Shakiban, and A. Tannenbaum, "Differential and numerically 
invariant signature curves applied to object recognition," to appear in Int. J. Computer 
Vision, 1996. 

[40] E. Cartan, La Methode du Repere Mobile, la Theorie des Groupes Continus, et les Espaces 
Generalises; Exposes de Geometrie, Hermann, Paris, 1935. 

[41] V. Casselles, F. Catte, T. Coll, and F. Dibos, "A geomteric model for active contours in 
image processing," Numerische Mathematik 66 (1993), pp. 1-31. 

[42] V. Caselles, R. Kimmel, and G. Sapiro, "Geodesic snakes," to appear in Int. J. Computer 
Vision. 

[43] T.-J. Cham and R. Cipolla, "Geometric saliency of curve correspondences and grouping 
of symmetric contours," Technical Report, Dept. of Engineering, Univ. of Cambridge, 
1995. 

[44] J. Cockburn, Y. Sidar, and A. Tannenbaum, "Stability margin optimization via interpo- 
lation and conformal mappings," IEEE Trans. Aut. Control 40 (1995), pp. 1070-1074. 

[45] J. Cockburn and A. Tannenbaum, "Multivariable stability margin optimization: a spec- 
tral tangential interpolation approach," Int. J. Control 63 (1996), pp. 557-590 

[46] J. Cockburn, A Structured Interpolation Approach to Robust Systems Synthesis, Ph. D. 
Thesis, Department of Electrical Engineering, University of Minnesota, June 1994. 

[47] M. G. Crandall, H. Ishii, and P. L. Lions, "User's guide to viscosity solutions of second 
order partial linear differential equations," Bulletin of the American Math. Society 27 
(1992), pp. 1-67. 

[48] R. F. Curtain, "ff°°-control for distributed parameter systems: a survey," Proc. of 29th 
IEEE Conference on Decision and Control, Honolulu, Hawaii, December 1990, pp. 22-26. 

[49] V. A. Dorodnitsyn, "Symmetry of finite difference equations," CRC Handbook of Lie 
Group Analysis of Differential Equations, Vol. 1, Ibragimov, N.H., ed., CRC Press, Boca 
Raton, Fl., 1994, pp. 349-403. 

[50] J. C. Doyle, "Analysis of feedback systems with structured uncertainties," IEE Proc. 
129 (1982), pp. 242-250. 

[51] J. C. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory, McMillan, New 
York, 1991. 

[52] J. C. Doyle, K. Glover, P. Khargonekar, and B. Francis, "State space solutions to stan- 
dard H2 and H°° control problems," IEEE Trans. Aut. Control 34 (1989), pp. 831-847. 

27 



[53] D. Enns, H. Özbay, and A. Tannenbaum, "Abstract model and control design for an 
unstable aircraft," AIAA Journal of Guidance, Control, and Navigation 15 (1992), pp. 
498-508. 

[54] B. Etkin, Dynamics of Flight, John Wiley, New York, 1982. 

[55] L. C. Evans and J. Spruck, "Motion of level sets by mean curvature, I," J. Differential 
Geometry 33 (1991), pp. 635-681. 

[56] M. Fan, "A lifting result on structured singular values," Technical Report, Georgia In- 
stitute of Technology, Atlanta, Georgia, November 1992. 

[57] O. Faugeras, "On the evolution of simple curves of the real projective plane," Comptes 
rendus de l'Acad. des Sciences de Paris 317, pp. 565-570, September 1993. 

[58] O. Faugeras, "Cartan's moving frame method and its application on the geometry and 
evolution of curves in the Euclidean, affine, and projective planes," INRIA TR 2053, 
September 1993. 

[59] O. Faugeras and R. Keriven, "Scale-spaces and affine curvature," Proc. Europe-China 
Workshop on Geometrical Modelling and Invariants for Computer Vision, edited by R. 
Mohr and C. Wu, 1995, pp. 17-24. 

[60] D. S. Flamm, Control of delay systems for minimax sensitivity, Ph.D. Thesis, MIT, June 
1986. 

[61] D. S. Flamm and H. Yang, "Optimal mixed sensitivity for general distributed plants," 
IEEE Trans. Aut. Control AC-39 (1994), pp. 1150-1165. 

[62] C. Foias and A. Frazho, The Commutant Lifting Approach to Interpolation Problems, 
Birkhauser-Verlag, Boston, 1990. 

[63] C. Foias and A. Frazho, "Commutant lifting and simultaneous H°° and L2 suboptimiza- 
tion," SIAM J. Math. Anal. 23 (1992), pp. 984-994. 

[64] C. Foias, A. Frazho, and A. Tannenbaum, "On certain minimal entropy extensions ap- 
pearing in dilation theory," Linear Algebra and Its Applications 137 (1991), pp. 213-238. 

[65] C. Foias, A. Frazho, and A. Tannenbaum, "On combined H°°-H2 suboptimal inter- 
polants," Linear Algebra and Its Applications 203-204 (1994), pp. 443-469. 

[66] C. Foias, C. Gu, and A. Tannenbaum, "Intertwining dilations, intertwining extensions, 
and causality," Ada Sei. Math. (Szeged) 56 (1993), pp. 101-123. 

[67] C. Foias, C. Gu, and A. Tannenbaum, "Nonlinear H°° optimization: a causal power 
series approach," SIAM J. Control and Optimization 33 (1995), pp. 185-207. 

[68] C. Foias, C. Gu, and A. Tannenbaum, "On a causal linear optimization theorem," Journal 
of Math. Analysis and Applications 182 (1994), pp. 555-565. 

[69] C. Foias, C. Gu, and A. Tannenbaum, "On the nonlinear standard H°° problem," to 
appear in JMAA. 

[70] C. Foias and A. Tannenbaum, "On the parametrization of the suboptimal solutions in 
generalized interpolation," Linear Algebra and its Applications 124 (1989), pp. 145-164. 

[71] C. Foias, H. Ozbay, and A. Tannenbaum, Robust Control of Infinite Dimensional Sys- 
tems, Lecture Notes in Computer and Information Science 209, Springer-Verlag, New 
York, 1996. 

28 



[72] C. Foias and A. Tannenbaum, "On the four block problem, I," Operator Theory: Ad- 
vances and Applications 32 (1988), pp. 93-112. 

[73] C. Foias and A. Tannenbaum, "On the four block problem, II : the singular system," 
Operator Theory and Integral Equations 11 (1988), pp. 726-767. 

[74] C. Foias and A. Tannenbaum, "On the Nehari problem for a certain class of L°° functions 
appearing in control theory," J. of Functional Analysis 74 (1987), pp. 146-159. 

[75] C. Foias and A. Tannenbaum, "On the parametrization of the suboptimal solutions in 
generalized interpolation," Linear Algebra and its Applications 124 (1989), pp. 145-164. 

[76] C. Foias and A. Tannenbaum, "Some remarks on optimal interpolation," Systems and 
Control Letters 11 (1988), pp. 259-264. 

[77] C. Foias and A. Tannenbaum, "A strong Parrott theorem," Proceedings of the American 
Mathematical Society 106 (1989), pp. 777-784. 

[78] C. Foias and A. Tannenbaum, "Iterated commutant lifting for systems with rational 
symbol," Operator Theory: Advances and Applications 41 (1989), pp. 255-277. 

[79] C. Foias and A. Tannenbaum, "Weighted optimization theory for nonlinear systems," 
SI AM J. on Control and Optimization 27 (1989), pp. 842-860. 

[80] C. Foias and A. Tannenbaum, "Nonlinear H°° theory," in Robust Control of Nonlinear 
Systems and Nonlinear Control, edited by M. Kaashoek, J. van Schuppen, A. Ran, 
Birkhauser, Boston, 1990, pp. 267-276. 

[81] C. Foias and A. Tannenbaum, "Causality in commutant lifting theory," Journal of Func- 
tional Analysis 118 (1993), pp. 407-441. 

[82] C. Foias and A. Tannenbaum, "Game theory and commutant lifting," in preparation. 

[83] C. Foias , A. Tannenbaum, and G. Zames, "On the H°° optimal sensitivity problem for 
systems with delays," SI AM J. Control and Optimization 25 (1987), pp. 686-706. 

[84] C. Foias, A. Tannenbaum, and G. Zames, "Some explicit formulae for the singular values 
of a certain Hankel operators with factorizable symbol," SIAM J. Math. Analysis 19 
(1988), pp. 1081-1091. 

[85] B. Francis, A Course in H°° Control Theory, Lecture Notes in Control and Information 
Sciences 88, Springer Verlag, 1987. 

[86] B. Francis and A. Tannenbaum, "Generalized interpolation theory in control," Mathe- 
matical Intelligencer 10 (1988), pp. 48-53. 

[87] M. Gage and R. S. Hamilton, "The heat equation shrinking convex plane curves," J. 
Differential Geometry 23 (1986), pp. 69-96. 

[88] Y. G. Chen, Y. Giga, and S. Goto, "Uniqueness and existence of viscosity solutions of 
generalized mean curvature flow equations," J. Differential Geometry 33, pp. 749-786, 
1991. 

[89] M. Green, "The moving frame, differential invariants and rigidity theorems for curves in 
homogeneous spaces," Duke Math. J. 45 (1978), pp. 735-779. 

[90] M. Grayson, "The heat equation shrinks embedded plane curves to round points," J. 
Differential Geometry 26 (1987), pp. 285-314. 

29 



[91] M. Grayson, "Shortening embedded curves," Annals of Mathematics 129 (1989), pp. 
71-111. 

[92] H. W. Guggenheimer, Differential Geometry, McGraw-Hill Book Company, New York, 
1963. 

[93] M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford 
Univ. Press, New York, 1993. 

[94] K. Hirata, Y. Yamamoto, and A. Tannenbaum, "Some remarks on Hamiltonians and the 
infinite dimensional one block H°° problem," to appear in Systems and Control Letters. 

[95] A. Hummel, "Representations based on zero-crossings in scale-space", Proc. IEEE Com- 
puter Vision and Pattern Recognition Conf, pp. 204-209, 1986. 

[96] A. Isidori and A. Astolfi, "Disturbance attenuation and i/oo-control via measurement 
feedback in nonlinear systems," IEEE Trans. Aut. Control AC-37 (1992), pp. 1283- 
1293. 

[97] A. Isidori and A. Astolfi, "Nonlinear i/oo-control via measurement feedback," J. Math. 
Syst., Estimation, and Control 2 (1992), pp. 31-44. 

[98] A. Isidori and W. Kang, UH°° control via measurement feedback for general nonlinear 
systems" IEEE Trans. Aut. Control AC-40 (1995), pp. 466-472. 

[99] G. R. Jensen, Higher order contact of submanifolds of homogeneous spaces, Lecture Notes 
in Math. 610, New York, Springer-Verlag, 1977. 

[100] P. Khargonekar, H. Ozbay, and A. Tannenbaum, "Four block problem : stable weights 
and rational weightings" Int. J. Control 50 (1989), pp. 1013-1023. 

[101] P. Khargonekar and A. Tannenbaum, "Noneuclidean metrics and the robust stabiliza- 
tion of systems with parameter uncertainty," IEEE Trans. Aut. Control AC-30 (1985), 
pp. 1005-10013. 

[102] M. Khammash, "Necessary and sufficient conditions for the robustness of time-varying 
systems with applications to sampled-data systems," IEEE Trans. Aut. Control AC-38 
(1993), pp. 49-57. 

[103] M. Khammash and J. B. Pearson, "Performance robustness of discrete-time systems 
with structured uncertainty," IEEE Trans. Aut. Control AC-36 (1991), pp. 398-412. 

[104] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, "Conformal 
curvature flows: from phase transitions to active vision," Archive of Rational Mechanics 
and Analysis 134 (1996), pp. 275-301. A short version of this paper has appeared in the 
Proceedings of ICCV, June 1995. 

[105] R. Kimmel, A. Amir, A. M. Bruckstein, "Finding shortest paths on surfaces using level 
sets propagation," IEEE-PAMI17 (1995), pp. 635-640. 

[106] B. B. Kimia, Toward a Computational Theory of Shape, Ph.D. Dissertation, Department 
of Electrical Engineering, McGill University, Montreal, Canada, August 1990. 

[107] B. B. Kimia, A. Tannenbaum, and S. W. Zucker, "Toward a computational theory of 
shape: An overview", Lecture Notes in Computer Science All, pp. 402-407, Springer- 
Verlag, New York, 1991. 

30 



[108] B. B. Kimia, A. Tannenbaum, and S. W. Zucker, "Shapes, shocks, and deformations, 
I," Int. J. Computer Vision 15 (1995), pp. 189-224. 

[109] B. B. Kimia, A. Tannenbaum, and S. W. Zucker, "On the evolution of curves via a 
function of curvature, I: the classical case," J. of Math. Analysis and Applications 163 
(1992), pp. 438-458. 

[110] B. B. Kimia, A. Tannenbaum, and S. W. Zucker, "Optimal control methods in computer 
vision and image processing," in Geometry Driven Diffusion in Computer Vision edited 
by Bart ter Haar Romeny, Kluwer, 1994. 

[Ill] J. J. Koenderink, "The structure of images," Biological Cybernetics 50 (1984), pp. 
363-370. 

[112] A. Kumar, A. Tannenbaum, and G. Balas, "Optical flow: a curve evolution approach," 
IEEE Transactions on Image Processing 5 (1996), pp. 598-610. 

[113] A. Kumar, S. Haker, C. Vogel, A. Tannenbaum, and S. Zucker, "Stereo disparity and 
L1 minimization" Proceedings of IEEE Conference on Decision and Control, December 
1997. 

[114] F. Klein and S. Lie, "Über diejenigen ebenen Curven, welche durch ein geschlossenes 
System von einfach unendlich vielen vertauschbaren linearen Transformationen in sich 
übergeben," Math. Ann. 4 (1871), pp. 50-84. 

[115] K. Lenz, H. Özbay, A. Tannenbaum, J. Turi, and B. Morton, "Frequency domain anal- 
ysis and robust control design for an ideal flexible beam," Automatica 27 (1991), pp. 
947-961. 

[116] S. Lie, "Theorie der Transformationsgruppen I," Math. Ann. 16 (1880), pp. 441-528. 

[117] T. Lindeberg, Scale-Space Theory in Computer Vision, Kluwer, 1994. 

[118] T. Lindeberg and J. Garding, "Shape-adapted smoothing in estimation of 3D depth 
cues from affine distortions of local 2D structures," Proc. ECCV, Stockholm, Sweden, 
May 1994. 

[119] T. Lypchuk, M. Smith, and A. Tannenbaum "Weighted sensitivity minimization: gen- 
eral plants in H°° and rational weights," Linear Algebra and its Applications 109 (1988), 
pp. 71-90. 

[120] A. Megretski, "Power distribution approach in robust control," Technical Report, Royal 
Institute of Technology, Stockholm, Sweden, 1992. 

[121] A. Megretski, "Necessary and sufficient conditions of stability: A multiloop generaliza- 
tion of the circle criterion," Technical Report, Royal Institute of Technology, Stockholm, 
Sweden, 1991. 

[122] R. Malladi, J. Sethian, B. and Vermuri, "Shape modelling with front propagation: a 
level set approach," IEEE PAMI17 (1995), pp. 158-175. 

[123] J. Marsden, Lectures on Mechanics, Cambridge Univ. Press, London, 1992. 

[124] F. Mokhatarian and A. Mackworth, "A theory of multiscale, curvature-based shape 
representation for planar curves," IEEE Trans. Pattern Anal. Machine Intell. 14 (1992), 
pp. 789-805. 

31 



[125] D. Mumford and J. Shah, "Optimal approximations by piecewise smooth functions and 
associated variational problems," Comm. on Pure and Applied Math. 42 (1989). 

[126] J. Mundy, A. Zisserman, A. (eds.), Geometric Invariance in Computer Vision, MIT 
Press, Cambridge, Mass., 1992. 

[127] J. Mundy, A. Zisserman, and D. Forsyth (eds.), Applications of Invariance in Computer 
Vision, Springer-Verlag, New York, 1994. 

[128] W. J. Niessen, B. M. ter Haar Romeny, L. M. J. Florack, and A. H. Salden, "Nonlinear 
diffusion of scalar images using well-posed differential operators," Technical Report, 
Utrecht University, The Netherlands, October 1993. 

[129] P. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995. 

[130] P. Olver, G. Sapiro, and A. Tannenbaum, "Differential invariant signatures and flows 
in computer vision: a symmetry group approach," in Geometry Driven Diffusion in 
Computer Vision edited by Bart ter Haar Romeny, Kluwer, 1994. 

[131] P. Olver, G. Sapiro, and A. Tannenbaum, "Invariant geometric evolutions of surfaces 
and volumetric smoothing," SI AM J. Applied Mathematics 57 (1997). 

[132] P. Olver, G. Sapiro, and A. Tannenbaum, "Affine invariant detection: edges, active 
contours, and segments," to appear in CVIU. 

[133] S. Osher, "Riemann solvers, the entropy condition, and difference approximations," 
SIAMJ. Numer. Anal. 21, pp. 217-235, 1984. 

[134] S. Osher and L. I. Rudin, "Feature-oriented image enhancement using shock filters," 
SIAMJ. Numer. Anal. 27 (1990), pp. 919-940. 

[135] S. J. Osher and J. A. Sethian, "Fronts propagation with curvature dependent speed: 
Algorithms based on Hamilton-Jacobi formulations," Journal of Computational Physics 
79 (1988), pp. 12-49. 

[136] H. Özbay, H°° Control of Distributed Systems: A Skew Toeplitz Approach, Ph.D. Thesis, 
University of Minnesota, June 1989. 

[137] H. Ozbay, "Controller reduction in the 2-block H°° design for distributed plants," Int. 
J. Control 54 (1992), pp. 1291-1308. 

[138] H. Ozbay, M. C. Smith and A. Tannenbaum, "Controller design for unstable distributed 
plants," Proc. of ACC, 1990, pp. 1583-1588. 

[139] H. Ozbay, M. C. Smith and A. Tannenbaum, "Mixed sensitivity optimization for unsta- 
ble infinite dimensional systems," Linear Algebra and Its Applications 178 (1993), pp. 
43-83. 

[140] H. Özbay and A. Tannenbaum, "A skew Toeplitz approach to the H°° control of multi- 
variable distributed systems," SI AM J. Control and Optimization 28 (1990), pp. 653-670. 

[141] H. Özbay and A. Tannenbaum, "On the synthesis of H°° optimal controllers for infinite 
dimensional plants," in New Trends and Applications in Distributed Parameter Control 
Systems, edited by G. Chen, E. B. Lee, W. Littman, L. Marcus, Marcel Dekker, New 
York, 1990, pp. 271-301. 

32 



142] H. Özbay and A. Tannenbaum, "On the structure of suboptimal H°° controllers in the 
sensitivity minimization problem for distributed stable plants," Automatica 27 (1991), 
pp. 293-305. 

143] A. Packard, K. Zhou, P. Pandey, J. Leonhardson and G. Balas, "Optimal constant I/O 
similarity scaling for full information and state feedback control problems," Systems & 
Control Letters 19 (1992), pp. 271-280. 

144] E. J. Pauwels, P. Fiddelaers, and L. J. Van Gool, "Shape-extraction for curves using 
geometry-driven diffusion and functional optimization," Proc. ICCV, Cambridge, MA, 
June 1995. 

145] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," 
IEEE Trans. Pattern Anal. Machine Intell. 12 (1990), pp. 629-639. 

146] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 
Springer-Verlag, New York, 1984. 

147] A.Rodriguez, Control of Infinite Dimensional Systems Using Finite Dimensional Tech- 
niques, Ph.D. Thesis, MIT, August 1990. 

148] B. ter Haar Romeny (editor), Geometry-Driven Diffusion in Computer Vision, Kluwer, 
Holland, 1994. 

149] L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal 
algorithms," Physica D 60, pp. 259-268, 1992. 

150] M. G. Safonov, Stability Robustness of Multivariable Feedback Systems, MIT Press, 
Cambridge, Mass., 1980. 

151] M. G. Safonov, "Optimal H°° synthesis of robust controllers for systems with structured 
uncertainty," Proc. of 25th IEEE Conference on Decision and Control, Athens, Greece, 
December 1986, pp. 1822-1825. 

152] G.Sapiro and A. Tannenbaum, "On affine plane curve evolution," Journal of Functional 
Analysis 119 (1994), pp. 79-120. 

153] G. Sapiro and A. Tannenbaum, "Affine invariant scale-space," International Journal of 
Computer Vision 11 (1993), pp. 25-44. 

154] G. Sapiro and A. Tannenbaum, "Area and length preserving geometric invariant scale- 
spaces," IEEE Pattern Analysis and Machine Intelligence 17 (1995), pp. 67-72. 

155] G. Sapiro and A. Tannenbaum, "Invariant curve evolution and image analysis," Indiana 
University J. of Mathematics 42 (1993), pp. 985-1009. 

156] G. Sapiro and A. Tannenbaum, "Image smoothing based on an affine invariant flow," 
Proceedings of Conference on Information Sciences and Systems, Johns Hopkins Univer- 
sity, March 1993. 

157] D. Sarason, "Generalized interpolation in H°°? Transactions of the AMS 127 (1967), 
pp. 179-203. 

158] J. A. Sethian, "Curvature and the evolution of fronts," Commun. Math. Phys. 101 
(1985), pp. 487-499. 

159] J. A. Sethian, "A review of recent numerical algorithms for hypersurfaces moving with 
curvature dependent speed," J. Differential Geometry 31 (1989), pp. 131-161. 

33 



[160] J. A. Sethian, Level Set Methods, Cambridge University Press, 1996. 

[161] J. Shah, "Recovery of shapes by evolution of zero-crossings," Technical Report, Dept. 
of Mathematics, Northeastern Univ., Boston, 1995. 

[162] J. Shamma, "Robust stability with time-varying structured uncertainty," IEEE Trans. 
Aut. Control AC-39 (1994), pp. 714-724. 

[163] Y. Shokin, The Method of Differential Approximation, Springer-Verlag, New York, 
1983. 

[164] A. Sideris and M. Safonov, "A design algorithm for the robust synthesis of SISO feedback 
control systems using conformal maps and H°° theory," Proc. of ACC, 1984, pp. 1710— 
1715. 

[165] M. C. Smith, "Singular values and vectors of a class of Hankel operators," Syst. Control 
Lett. 12 (1989), pp. 301-308. 

[166] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 
1983. 

[167] G. A. Sod, Numerical Methods in Fluid Dynamics, Cambridge University Press, Cam- 
bridge, 1985 

[168] H. M. Soner, "Motion of a set by the curvature of its boundary," J. of Diff. Equations 
101 (1993), pp. 313-372. 

[169] M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish 
Inc, Berkeley, California, 1979. 

[170] B. Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, New York, 1993. 

[171] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North 
Holland, Amsterdam, 1970. 

[172] A. Tannenbaum, Invariance and System Theory: Algebraic and Geometric Aspects, 
Lecture Notes in Mathematics 845, Springer-Verlag, 1981. 

[173] A. Tannenbaum, "Spectral Nevanlinna-Pick interpolation theory," Proc. of 26th IEEE 
Conference on Decision and Control, Los Angeles, California, December 1987, pp. 1635- 
1638. 

[174] A. Tannenbaum, "On the multivariable gain margin problem," Automatica 22 (1986), 
pp. 381-384. 

[175] A.Tannenbaum, "Three snippets of curve evolution theory in computer vision," Journal 
of Mathematical and Computer Modelling 24 (1996), pp. 103-119. 

[176] A. Tannenbaum, "Frequency domain methods for the if °°-optimization of distributed 
systems," Lecture Notes in Control and Information Sciences 185 (1993), pp. 242-278. 

[177] A. J. Van der Shaft, "L2-gain analysis of nonlinear systems and nonlinear H°° control," 
IEEE Trans. Aut. Control 37 (1992), pp. 770-784. 

[178] L. Van Gool, T. Moons, E. Pauwels, A. Oosterlinck, "Semi-differential invariants," in 
Applications of Invariance in Computer Vision, edited by J.L. Mundy and A. Zisserman, 
Springer-Verlag, New York, 1994, pp.157-192. 

[179] L. Van Gool, T. Moons, and D. Ungureanu, "Affine/photometric invariants for planar 
intensity patterns," Proc. ECCV, pp. 642-651, Cambridge, UK, April 1996. 

34 



[180] R. T. Whitaker, "Algorithms for implicit deformable models," Proc. ICCV'95, Cam- 
bridge, MA, June 1995. 

[181] I.Weiss, "Geometric invariants and object recognition," Int. J. Comp. Vision 10 (1993), 
207-231. 

[182] I. Weiss, "Noise-resistant invariants of curves," IEEE Trans. Pattern Anal. Machine 
Intelligence 15 (1993), 943-948. 

[183] H. Weyl, Classical Groups, Princeton Univ. Press, Princeton, N.J., 1946. 

[184] B. White, "Some recent developments in differential geometry," Mathematical Intelli- 
gencer 11 (1989), pp. 41-47. 

[185] E. J. Wilczynski, Projective Differential Geometry of Curves and Ruled Surfaces, 
Leipzig, Teubner, 1906. 

[186] A. P. Witkin, "Scale-space filtering," Int. Joint. Conf. Artificial Intelligence, pp. 1019- 
1021, 1983. 

[187] Y. Yamamoto, "Pseudo-rational input/output maps and their realizations: a fractional 
representation approach to infinite-dimensional systems," SIAM J. Control and Opti- 
mization 26 (1988), pp. 1415-1430. 

[188] Y. Yamamoto, "Reachability of a class of infinite-dimensional linear systems: an ex- 
ternal approach with applications to general neutral systems," SIAM J. Control and 
Optimization 27 (1989), pp. 217-234. 

[189] Y. Yamamoto, "Equivalence of internal and external stability for a class of distributed 
systems," Math. Control, Signals and Systems 4 (1991), pp. 391-409. 

[190] Y. Yamamoto and A. Tannenbaum, "Pseudorational functions and H°° theory," Pro- 
ceedings ofACC, pages 1593-1597, 1994. 

[191] Y. Yamamoto and A. Tannenbaum, "Skew Toeplitz theory and pseudorational transfer 
functions," Proceedings of 33rd CDC, pages 878-879, 1994. 

[192] A. Yezzi, A. Tannenbaum, S. Kichenassamy, and P. Olver, "A gradient surface approach 
to 3D segmentation," Proceedings of IS&T, May 1996. 

[193] N. J. Young, "An algorithm for the super-optimal sensitivity-minimising controller," 
Proc. of Workshop on New Perspectives in Industrial Control System Design Using H°° 
Methods, Oxford, 1986. 

[194] G. Zames and S. K. Mitter, "A note on essential spectrum and norms of mixed Hankel- 
Toeplitz operators," Systems and Control Letters 10 (1988), pp. 159-165. 

[195] G. Zames, "Feedback and optimal sensitivity: model reference transformations, mul- 
tiplicative seminorms, and approximate inverses," IEEE Trans. Auto. Control AC-26 
(1981), pp. 301-320. 

7    Papers of Allen Tannenbaum and Collaborators under AFOSR- 
AF/F49620-94-1-00S8DEF 

1. "Some mathematical problems in computer vision" (with A. Bruckstein), Ada Math 
Appl. 30 (1993). 

35 



2. "Causality in commutant lifting theory" (with C. Foias), Journal of Functonal Analysis 
118 (1993), 407-441. 

3. "On combined H°°-H2 suboptimal interpolants" (with C. Foias and A. Frazho), Linear 
Algebra and Its Applications 203-204 (1994), pp. 443-469. 

4. "On affine plane curve evolution" (with G. Sapiro), Journal of Functional Analysis 119 
(1994), pp. 79-120. 

5. "Intertwining dilations, intertwining extensions, and causality" (with C. Foias and C. 
Gu), Ada Sei. Math. (Szeged) 56 (1993), pp. 101-123. 

6. "Nonlinear H°° optimization: a causal power series approach," SI AM J. Control and 
Optimization 33 (1995), pp. 185-207. 

7. "Shapes, shocks, and deformations, I: the components of shape and the reaction-diffusion 
space" (with B. Kimia and S. Zucker), International Journal of Computer Vision 15 
(1995), 189-224. 

8. "Affine invariant scale-space (with G. Sapiro), International Journal of Computer Vision 
11 (1993), 25-44. 

9. "On invariant curve evolution and image analysis" (with G. Sapiro), Indiana Univ. 
Journal of Mathematics 42 (1993), 985-1009. 

10. "A relative Toeplitz-Hausdorff theorem" (with H. Bercovici and C. Foias), Operator 
Theory: Advances and Applications 71 (1994), pp. 29-34. 

11. "Continuity of the spectrum on closed similarity orbits" (with H. Bercovici and C. 
Foias), Integral Equations and Operator Theory 18 (1994), 242-246. 

12. "On area and length preserving geometric invariant curve evolutions" (with G. Sapiro), 
IEEE Trans, on Pattern Analysis and Machine Inteligence 17 (1995), pp. 67-72. 

13. "Stability margin optimization via interpolation and conformal mappings" (with J. 
Cockburn and Y. Sidar), IEEE Trans. Aut. Control 40 (1995), pp. 1066-1070. 

14. "On a lifting theorem for the structured singular value" (with H. Bercovici, C. Foias, 
and P. Khargonekar), Journal of Math. Analysis and Applications 187 (1994), pp. 
617-627. 

15. "Classification and uniqueness of invariant geometric flows" (with P. Olver and G. 
Sapiro), Comptes Rendus Acad. Sei. (Paris) 319 (1994), pp. 339-344. 

16. "Multivariable stability margin optimization: a spectral tangential interpolation ap- 
proach" (with Juan Cockburn), Int. J. Control 63 (1996), pp. 557-590. 

17. "The structured singular value for linear input/output systems," (with H. Bercovici and 
C. Foias), SIAM J. Control and Optimization 34 (1996), pp. 1392-1404. 

18. "Invariant geometric evolutions of surfaces and volumetric smoothing" (with P. Olver 
and G. Sapiro), SIAM J. Applied Math. 57 (1997), pp. 176-194. 

36 



19. "Optical flow: a curve evolution approach" (with A. Kumar and G. Balas), IEEE Trans. 
Image Processing 5 (1996), pp. 598-611. 

20. "Conformal curvature flows: from phase transitions to active contours" (with S. Kich- 
enesamy, A. Kumar, P. Olver, and A. Yezzi), Archive for Rational Mechanics and Anal- 
ysis 134 (1996), pp. 275-301. 

21. "The equivalence among the solutions of the H°° optimal sensitivity computation prob- 
lem" (with K. Hirata and Y. Yamamoto), Trans, of the Society of Instrument and 
Control Engineers 31 (1995), pp. 1954-1961. 

22. "Three snippets of curve evolution theory in computer vision," Mathematical and Com- 
puter Modelling Journal 24 (1996), pp. 103-119. 

23. "On skew Toeplitz operators, II" (with H. Bercovici and C. Foias), to appear in Operator 
Theory: Advances and Applications. 

24. "Behavioral analysis of anisotropic diffusion in image processing" (with Y. You, M. 
Kaveh, W. Xu), IEEE Trans. Image Processing 5 (1996), pp. 1539-1553. 

25. "Affine geometry, curve flows and invariant numerical approximations" (with E. Calabi 
and P. Olver), Advances in Mathematics 124 (1996), pp. 154-196 

26. "New solution to the two block H°° problem for infinite dimensional stable plants" 
(with K. Hirata, Y. Yamamoto, T. Katayama), Trans, of the Society of Instrument and 
Control Engineers 32 (1996), pp. 1416-1424. 

27. "On the nonlinear standard H°° problem" (with C. Foias and C. Gu), to appear in 
JMAA. 

28. "Affine invariant edge maps and active contours" (with P. Olver and G. Sapiro), to 
appear in CVIU. 

29. "Geometric active contours for segmentation of medical imagery," (with S. Kichenesamy, 
A. Kumar, P. Olver, and A. Yezzi), IEEE Trans. Medical Imaging 16 (1997), pp. 199- 
209. 

30. "Differential and numerically invariant signature curves applied to object recognition" 
(with E. Calabi, P. Olver, C. Shakiban), to appear in International Journal of Computer 
Vision. 

31. "Some remarks on Hamiltonians and the infinite-dimensional one block H°° problem" 
(with K. Hirata and Y. Yamamoto), Systems and Control Letters 29 (1996), pp. 111- 
117. 

32. "Area and length minimizing flows for segmentation" (with Y. Lauziere, K. Siddiqi, and 
S. Zucker), to appear in IEEE Trans. Image Processing. 

33. "Introduction to special issue of IEEE Trans. Image Processing on partial differential 
equation methods in image processing" (with V. Caselles, J. M. Morel, and G. Sapiro), 
to appear in IEEE Trans. Image Processing. 

37 



34. "Shapes, shocks, and wiggles" (with K. Siddiqi, B. Kimia, and S. Zucker), to appear in 
Journal of Imaging and Vision Computation. 

35. "Curve evolution models for real-time identification with application to plasma etching" 
(with J. Berg and A. Yezzi), to appear in IEEE Trans. Aut. Control. 

36. "Skew Toeplitz solution to the H°° problem for infinite dimensional unstable plants" 
(with K. Hirata, Y. Yamamoto, and T. Katayama), to appear in Trans, of the Society 
of Instrument and Control Engineers. 

Books 

37. Robust Control of Distributed Parameter Systems (with Ciprian Foias and Hitay Ozbay), 
Lecture Notes in Control and Information Sciences 209, Springer-Verlag, New York, 
1995. 

38. Feedback Control, Uncertainty, and Complexity, edited by Bruce Francis and Allen 
Tannenbaum, Lecture Notes in Control and Information Sciences 202, Springer-Verlag, 
New York, 1995. 

Papers Submitted for Publication 

39. "On a nonlinear causal commutant lifting theorem" (with C. Foias and C. Gu), submit- 
ted for publication to Integral Equations and Operator Theory. 

40. "The shape triangle: parts, protrusions, and bends" (with B. Kimia, K. Siddiqi, and S. 
Zucker), submitted for publication in Vision Research. 

41. "On the affine invariant heat equation for nonconvex curves" (with S. Angenent and G. 
Sapiro), submitted for publication to Journal of the American Math. Society. 

42. "On a state space solution to the singular value problem of Toeplitz operators and the 
computation of the gap" (with K. Hirata and Y. Yamamoto), submitted for publication 
to Systems and Control Letters. 

Book Chapters 

43. "From curve detection to shape description" (with A. Dobbins, L. Iverson, B. Kimia, 
and S. Zucker), in Computer Vision: Systems, Theory, and Applications, edited by A. 
Basu and X. Li, World Scientific, Singapore, 1993, pages 25-39. 

44. "Generalized interpolation theory and its application to robust control design," Digital 
and Numeric Techniques and Their Applications in Control Systems, edited by C. T. 
Leondes, Academic Press, 1993, pages 163-217. 

45. "On optimal control methods in computer vision and image processing" (with B. Kimia 
and S. Zucker), in Geometry Driven Diffusion in Computer Vision, edited by Bart 
Romeny, Kluwer, Holland, 1994. 

38 



46. "Exploring the shape manifold: the role of conservation laws" (with B. Kimia and S. 
Zucker), in Ying-Lie, O., Toet, A., Foster, D., Heijmans, H., and Meer, P. (eds), Shape 
in Picture, Springer-Verlag, 1994, 601 - 620. 

47. "Differential invariant signatures and flows in computer vision: a symmetry group ap- 
proach" (with P. Olver and G. Sapiro), in Geometry Driven Diffusion in Computer 
Vision, edited by Bart Romeny, Kluwer, Holland, 1994. 

48. "On the structured singular value for operators on Hubert space," (with H. Bercovici 
and C. Foias), Lecture Notes in Control and Information Sciences 202 (1995), 11-23. 

49. "On the shape triangle" (with B. Kimia and S. Zucker), in C. Arcelli, L. Cordelia, and 
G. Sanniti di Baja (eds), Aspects of Visual Form Processing, 1994, World Scientific, 
Singapore, 307 - 323. 

50. "Invariant numerical approximations to differential invariant signatures" (with E. Calabi 
and P. Olver), to appear. 

51. "Differential invariants and curvature flows in active vision" (with A. Yezzi), in Op- 
erators, Systems, and Linear Algebra edited by U. Helmke and D. Praetzel-Wolters, 
Birkhauser-Verlag, 1997. 

52. "Gradients, curvature, and visual tracking" (with A. Yezzi), to appear. 

Conference Papers 

53. "On area and length preserving geometric diffusions" (with G. Sapiro), Proceedings of 
ECCV94, 1994. 

54. "Synthesis methods for robust nonlinear control" (with D. Bugajski and D. Enns), 
Proceedings of ACC, 1993. 

55. "Formulating invariant heat-type curve flows" (with G. Sapiro), Proceedings of the SPIE 
Geometric Methods of Computer Vision Conference, San Diego, 1993. 

56. "Robust optimization of distributed parameter systems," Proceedings of SPIE Confer- 
ence on Mathematics and Control in Smart Structures, pages 97-108, San Diego, 1995. 

57. "Non-linear shape approximation via the entropy scale space" (with B. Kimia and S. 
Zucker), Proceedings of the SPIE Geometric Methods of Computer Vision Conference, 
San Diego, 1993. 

58. "A lifting technique for the robust stability analysis of systems with structured time- 
varying perturbations" (with H. Bercovici, C. Foias, and P. Khargonekar), Proceedings 
of the Conference on Information Sciences and Systems, Johns Hopkins University, 
1993. 

59. "Affine invariant flows and image smoothing" (with G. Sapiro), Proceedings of the Con- 
ference on Information Sciences and Systems, Johns Hopkins University, 1993. 

39 



60. "On structured tangential interpolation in robust control" (with H. Bercovici, J. Cock- 
burn, and C. Foias), in Proceedings of 32nd IEEE Conference on Decision and Control, 
1993. 

61. "Pseudorational functions and H°° theory" (with Y. Yamamoto), Proceedings of ACC, 
1994. 

62. "Experiments on geometric image enhancement" (with M. Kaveh, G. Sapiro, Y. L. You), 
First IEEE International Conference on Image Processing, Austin, 1994. 

63. "Results in anisotropic diffusion" (with Y. L. You, M. Kaveh, W. Xu), First IEEE 
International Conference on Image Processing, Austin, 1994. 

64. "Skew Toeplitz theory and pseudorational transfer functions" (with Y. Yamamoto), 
Proceedings of IEEE Conference on Decision and Control, 1994. 

65. "Gradient flows and geometric active contours" (with S. Kichenesamy, A. Kumar, P. 
Olver, and A. Yezzi), Proceedings of ICCV, 1995. 

66. "Affine invariant gradient flows" (with P. Olver and G. Sapiro), Proceedings of In- 
ternational Conference on Partial Differential Equations Computer Vision and Image 
Processing, Paris, 1996. 

67. "Surface flows for 3D segmentation" (with A. Yezzi), Proceedings of MTNS, 1996. 

68. "Gradient flow based snake models" (with S. Kichenasamy, A. Kumar, P.Olver, A. 
Yezzi), Proceedings of IEEE Conference on Decision and Control, December 1995. 

69. "L1 minimization approach for the computation of optical flow" (with A. Kumar and 
G. Balas), Proceedings of International Conference on Image Processing, 1995. 

70. "Affine gradients, edge detection, and contour finding" (with P. Olver and G. Sapiro), 
Proceedings of CVPR, June 1996. 

71. "New solution to the two block H°° problem for infinite dimensional stable plants" 
(with K. Hirata and Y. Yamamoto), Proceedings of the European Control Conference, 
September 1995. 

72. " A gradient surface approach to 3D segmentation" (with S. Kichenesamy, P. Olver, 
and A. Yezzi), Proceedings of IS&T 49th Annual Conference, May 1996. 

73. "Surface evolution, conformal metrics, 3D contour finding, and 3D segmentation" (with 
S. Kichenesamy, P. Olver, and A. Yezzi), MTNS, June 1996. 

74. "Robust estimation for visual motion" (with A. Kumar and G. Balas), Proceedings of 
SPIE, San Diego, California, 1996. 

75. "State space formulae for the gap computation" (with K. Hirata and Y. Yamamoto), 
Proceedings of IEEE Conference on Decision and Control, 1996. 

40 



76. "Phase transitions and the estimation and control of semiconductor manufacturing pro- 
cesses" (with J. Berg and A. Yezzi), Proceedings of IEEE Conference on Decision and 
Control, 1996. 

77. "Shapes, shocks, and wiggles" (with B. Kimia, K. Siddiqi, and S. Zucker), International 
Workshop on Visual Form, June 1997. 

78. "Toward real-time estimation of surface motion: isotropy, anisotropy, and self-calibration" 
(with J. Berg and A. Yezzi), Proceedings of IEEE Conference on Decision and Control, 
December 1997. 

79. "Stereo disparity and L1 minimization" (with S. Haker, A. Kumar, C. Vogel, and S. 
Zucker), Proceedings of IEEE Conference on Decision and Control, December 1997. 

80. "Hyperbolic smoothing of shapes" (with K. Siddiqi, and S. Zucker), Proceedings of 
ICCV, January 1998. 

81. "Real-time control of semiconductor etching processes: experimental results" (with J. 
Berg and T. Higman), Proceedings of SPIE. 

82. "Causal power series and the nonlinear standard H°° problem" (with C. Foias and C. 
Gu), Proceedings of IEEE Conference on Decision and Control, December 1997. 

Book Reviews 

83. Book review of H00-Optimal Control and Related Minimax Design Problems, by T. 
Basar and P. Bernhard, SI AM Review (1994). 

Students of A. Tannenbaum Supported by AFOSR-AF/F49620-94-1-00S8DEF 

1. Juan Cockburn (Ph. D.) 
2. Arun Kumar (Ph. D.) 
3. Anthony Yezzi (Ph. D.) 

Awards of A. Tannenbaum During AFOSR-AF/F49620-94-1-00SDEF 

1. Keynote Speaker at American Mathematical Society Annual Meeting (1994). 

2. Plenary Speaker at American Mathematical Society Meeting (1997). 

3. George Taylor Research Award (University of Minnesota). 

4. Plenary Speaker for AFOSR Workshop on Optimal Design and Control (1997). 

5. SICE Best Paper Award for "New solution to the two block H°° problem for infinite 
dimensional stable plants" (with K. Hirata, Y. Yamamoto, T. Katayama), Trans, of 
the Society of Instrument and Control Engineers 32 (1996), pp. 1416-1424. 

41 


